Repository logo
 

Characterization of chromatin remodeling in mesenchymal stem cells on the application of oxidative stress

Date

2022

Authors

Kabi, Neda, author
Ghosh, Soham, advisor
Popat, Ketul, committee member
Goodrich, Laurie, committee member
Johnstone, Brian, committee member

Journal Title

Journal ISSN

Volume Title

Abstract

Chromatin is a highly dynamic entity of the eukaryotic cell nucleus. Contrary to previous belief that chromatin maintains a well-defined permanent architecture in the interphase nucleus, new evidences are emerging with a support of the notion that chromatin can locally and globally rearrange itself to adapt with the cellular microenvironmental changes. Such microenvironmental changes can be related to biophysical such as change in the stiffness of extracellular matrix or the force applied on the cell as well as biochemical such as change in the oxidative stress, osmolarity or the pH. It is not well understood how the chromatin architecture changes under such environmental changes and what is the functional significance of such change. Characterization and quantification of chromatin remodeling is therefore a first step to understand the chromatin dynamics for elucidating complex subnuclear behavior under the influence of single or multiple environmental changes. Towards that end, in this work, human bone marrow derived mesenchymal stem cells were used to characterize such chromatin level changes under the changing oxidative stress on the cells. Oxidative stress was applied using hydrogen peroxide treatment. After validation of the application of oxidative stress, a series of experiments and subsequent analysis was performed to understand the hallmarks of chromatin remodeling at high spatiotemporal resolution. Specific chromatin remodeling pattern was observed in the heterochromatin, euchromatin and the interchromatin regions. Finally, a key component of chromatin remodeling complex called ARID1A was identified which is critical for the chromatin remodeling process.

Description

Rights Access

Subject

Citation

Associated Publications