Repository logo
 

Characterization of DJ-1 mutation in mouse astrocytes

dc.contributor.authorAshley, Amanda Kathleen, author
dc.contributor.authorLegare, Marie E., advisor
dc.contributor.authorHanneman, William H., advisor
dc.date.accessioned2024-03-13T18:14:55Z
dc.date.available2024-03-13T18:14:55Z
dc.date.issued2008
dc.description.abstractMutations in DJ-1 cause early-onset Parkinson's disease (PD), a progressive, irreversible neurodegenerative condition. Currently, the only known cause of PD is mutation of certain genes including DJ-1, however these mutations account for only 5-10% of overall PD cases. The initial studies attempt to discern if expression of VEGF and HIF1α, factors thought to contribute to both PD as well as carcinogenesis were altered as a result of DJ-1 mutation. In fact, VEGF expression decreased in the brain of DJ-1-/- mice, and increased in lung tissue. As PD is a complex, multi-factorial condition, our studies are designed to incorporate mutation of the PD gene DJ-1 in our target cell type, astrocytes, which are exposed to toxic agents. Overall our results indicate that DJ-1-/- astrocytes do not have an exaggerated phenotype compared to DJ-1+/+ counterparts, however subtle alterations in cell function are observed in mitochondrial membrane potential, expression of proinflammatory mediators, as well as intracellular calcium (Ca2+) dynamics. First, DJ-1-/- astrocytes' resting mitochondrial membrane potential is significantly lower than that of DJ-1+/+ cells. Following treatment with 10μg/mL lipopolysaccharide (LPS), expression of COX2, and NOS2 were similar in both genotypes, however expression of TNFα was significantly lower in DJ-1-/- astrocytes. Finally, a delay in return to baseline intracellular Ca2+ levels following treatment with 1μM ATP was observed in DJ-1-/- cells. Interestingly, expression and secretion of TNFα were decreased in our DJ-1-/- astrocytes following LPS exposure, while expression of COX2 and NOS2 were similar. In conclusion, these changes, though modest, indicate basal dysfunction in astrocyte homeostasis induced by mutation of DJ-1. Secretion of TNFα may be the most significant finding, as it may predispose neurons to degeneration due to lack of sufficient protection against early neurotoxic insults that secreted TNFα may provide. These specific indicators are significant because mitochondrial dysfunction, altered neuroinflammation, and reactive gliosis are all implicated in PD. While altering astrocyte cellular function may not be the primary cause of DJ-1-linked PD, it is possible that changes in this cell type may contribute the progression of parkinsonism.
dc.format.mediumborn digital
dc.format.mediumdoctoral dissertations
dc.identifierETDF_Ashley_2008_3321257.pdf
dc.identifier.urihttps://hdl.handle.net/10217/237560
dc.languageEnglish
dc.language.isoeng
dc.publisherColorado State University. Libraries
dc.relation.ispartof2000-2019
dc.rightsCopyright and other restrictions may apply. User is responsible for compliance with all applicable laws. For information about copyright law, please see https://libguides.colostate.edu/copyright.
dc.rights.licensePer the terms of a contractual agreement, all use of this item is limited to the non-commercial use of Colorado State University and its authorized users.
dc.subjectastrocytes
dc.subjectDJ-1
dc.subjectParkinson's disease
dc.subjectneurosciences
dc.titleCharacterization of DJ-1 mutation in mouse astrocytes
dc.typeText
dcterms.rights.dplaThis Item is protected by copyright and/or related rights (https://rightsstatements.org/vocab/InC/1.0/). You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).
thesis.degree.disciplineCell and Molecular Biology
thesis.degree.grantorColorado State University
thesis.degree.levelDoctoral
thesis.degree.nameDoctor of Philosophy (Ph.D.)

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ETDF_Ashley_2008_3321257.pdf
Size:
1.96 MB
Format:
Adobe Portable Document Format