Experimental evaluation of a standalone hollow cathode apparatus with a magnetic field
Date
2024
Journal Title
Journal ISSN
Volume Title
Abstract
Testing hollow cathode assemblies independently from their use in Hall or gridded ion thrusters offers advantages such as reduced test facility size, lower power requirements, and improved diagnostic access. Standalone tests can reveal important cathode characteristics like ignition time, keeper ignition voltage, tip temperature, and current capability. Replicating the plasma phenomena that occur when a cathode operates within a thruster is challenging but essential, as these phenomena can generate energetic ions that erode cathode and keeper surfaces, limiting thruster lifespan. The primary challenge is to accurately emulate thruster conditions in standalone tests and verify this emulation through comparison with cathode-thruster operations. This thesis presents data on a standalone hollow cathode operated with magnetic fields that emulate those in electric propulsion devices, testing it both without an applied magnetic field and with permanent and solenoidal magnetic fields. Measurements of keeper, anode, and cathode-to-ground voltages were conducted over a range of anode currents and flow rates. At certain conditions, the plasma discharge transitioned to a less stable mode known as plume mode, with higher flow rates shifting this transition to higher anode currents. Introducing a magnetic field decreased the anode current at which this voltage shift occurred. Important findings in this work include: (1) Repeat tests with no magnetic field show that the transition behavior was different from one test to another, indicating that transition behavior may be affected by minute changes in cathode apparatus, or there are significant uncertainties associated with the transition and (2) Significant hysteresis in plume mode transition was observed when increasing and then decreasing anode current. These two findings along with the deleterious effects of the magnetic field have important implications on cathodes operating with Hall thrusters, which often exhibit large, rapid oscillations in discharge current.
Description
Rights Access
Subject
electric propulsion
hollow cathode
plasma
Hall thruster
cathode
magnetic field