Repository logo
 

Spatial modeling of site productivity and plant species diversity using remote sensing and geographical information system

dc.contributor.authorMohamed, Adel Ahmed Hassan, author
dc.contributor.authorReich, Robin M., advisor
dc.contributor.authorKhosla, Rajiv, advisor
dc.contributor.authorAndales, Allan, committee member
dc.contributor.authorWei, Yu, committee member
dc.date.accessioned2007-01-03T08:20:43Z
dc.date.available2007-01-03T08:20:43Z
dc.date.issued2011
dc.description.abstractThe primary objective of this study was to describe the variability in site productivity of the diverse forests found in the state of Jalisco, Mexico. This information is fundamental for the management and sustainability of the species-rich forests in the state. The study also contributes to developing conservation-management program for the plant species diversity in Elba protected area in Egypt. The objective of chapter 1 was to develop site productivity index (SPI) curves for eight major forest types in the state of Jalisco, Mexico, using the height-diameter relationship of the dominant trees. Using permanent plot data, selected height-diameter functions were evaluated for their predictive performance within each of the major forest types. An important finding of this study was that a simple linear model could be used to describe the height-diameter relationship of the dominant trees in all of the major forest types considered in this study. SPI varied significantly among forest types, which are largely determined by the trends in temperature and precipitation. SPI decreased with increasing temperature and increased with increasing precipitation. The height-diameter relationship of the dominant trees was independent of stand density, and the more productive sites are able to sustain higher levels of basal area and volume, than the less productive sites. Trees on more productive sites had less taper than trees on less productive sites; and stand density did not influence the form or taper of the dominant trees. Chapter 2 evaluates methods to model the spatial distribution of site productivity in eight major forest types found in the state of Jalisco, Mexico. A site productivity index (SPI) based on the height-diameter relationship of dominant trees was used to estimate the site productivity of 818 forests plots located throughout the state. A combination of regression analysis and a tree-based stratified design was used to describe the relationship between SPI and environmental variables which included soil attributes (pH, sand, and silt), topography (elevation, aspect, and slope), and climate (temperature and precipitation). The final model explained 59% of the observed variability in SPI. GIS layers representing SPI for each forest type, along with associated estimates of the prediction variance are developed. Chapter 3 characterizes plant species richness on four major transects in Elba protected area in Egypt. Species data recorded on 63 sample plots were used to characterize the plant species richness by species group (trees, shrubs and subshrubs). Poisson regression was used to identify explanatory variables for estimating species richness of each species group. Important variables included the location of the line transect (A, B, C, and D), soil texture (gravel, sand, silt and clay), pH, and elevation. The final model explained 23%, 58%, and 52% in the variability of species richness for shrubs, subshrubs, and trees, respectively. The results of the study will contribute to the development of an inventory and monitoring program aimed at the conservation and management of species diversity in Elba protected area of Egypt.
dc.format.mediumborn digital
dc.format.mediumdoctoral dissertations
dc.identifierMohamed_colostate_0053A_10812.pdf
dc.identifierETDF2011400258FRWS
dc.identifier.urihttp://hdl.handle.net/10217/70456
dc.languageEnglish
dc.language.isoeng
dc.publisherColorado State University. Libraries
dc.relation.ispartof2000-2019
dc.rightsCopyright and other restrictions may apply. User is responsible for compliance with all applicable laws. For information about copyright law, please see https://libguides.colostate.edu/copyright.
dc.subjectheight-diameter equations
dc.subjectPoisson regression
dc.subjectShannon-Weaver index
dc.subjectspatial estimation
dc.subjecttree-based stratified design
dc.subjecttree taper
dc.titleSpatial modeling of site productivity and plant species diversity using remote sensing and geographical information system
dc.typeText
dcterms.rights.dplaThis Item is protected by copyright and/or related rights (https://rightsstatements.org/vocab/InC/1.0/). You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).
thesis.degree.disciplineForest and Rangeland Stewardship
thesis.degree.grantorColorado State University
thesis.degree.levelDoctoral
thesis.degree.nameDoctor of Philosophy (Ph.D.)

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Mohamed_colostate_0053A_10812.pdf
Size:
1.43 MB
Format:
Adobe Portable Document Format
Description: