Repository logo
 

Landslide riskscapes in the Colorado Front Range: a quantitative geospatial approach for modeling human-environment interactions

dc.contributor.authorHicks, Heather Brainerd, author
dc.contributor.authorLaituri, Melinda, advisor
dc.contributor.authorFassnacht, Steven, committee member
dc.contributor.authorGrigg, Neil, committee member
dc.contributor.authorRathburn, Sara, committee member
dc.date.accessioned2021-06-07T10:21:04Z
dc.date.available2021-06-07T10:21:04Z
dc.date.issued2021
dc.description.abstractThis research investigated the application of riskscapes to landslides in the context of geospatial inquiry. Riskscapes are framed as a landscape of risk to represent risk spatially. Geospatial models for landslide riskscapes were developed to improve our understanding of the spatial context for landslides and their risks as part of the system of human-environment interactions. Spatial analysis using Geographic Information Systems (GIS) leveraged modeling methods and the distributed properties of riskscapes to identify and preserve these spatial relationships. This dissertation is comprised of four separate manuscripts. These projects defined riskscapes in the context of landslides, applied geospatial analyses to create a novel riskscape model to introduce spatial autocorrelation methods to the riskscape framework, compared geostatistical analysis methods in these landslide riskscape assessments, and described limitations of spatial science identified in the riskscape development process. The first project addressed the current literature for riskscapes and introduced landslides as a measurable feature for riskscapes. Riskscapes are founded in social constructivist theory and landslide studies are frequently based on quantitative risk assessment practices. The uniqueness of a riskscape is the inclusion of human geography and environmental factors, which are not consistently incorporated in geologic or natural hazard studies. I proposed the addition of spatial theory constructs and methods to create spatially measurable products. I developed a conceptual framework for a landslide riskscape by describing the current riskscape applications as compared to existing landslide and GIS risk model processes. A spatial modeling formula to create a weighted sum landslide riskscape was presented as a modification to a natural hazard risk equation to incorporate the spatial dimension of risk factors. The second project created a novel method for three geospatial riskscapes as an approach to model landslide susceptibility areas in Boulder and Larimer Counties, Colorado. This study synthesized physical and human geography to create multiple landslide riskscape models using GIS methods. These analysis methods used a process model interface in GIS. Binary, ranked, and human factor weighted sum riskscapes were created, using frequency ratio as the basis for developing a weighting scheme. Further, spatial autocorrelation was introduced as a recommended practice to quantify the spatial relationships in landslide riskscape development. Results demonstrated that riskscapes, particularly those for ranked and human factor riskscapes, were highly autocorrelated, non-random, and exhibited clustering. These findings indicated that a riskscape model can support improvements to response modeling, based on the identification of spatially significant clustering of hazardous areas. The third project extended landslide riskscapes to measurable geostatistical comparisons using geostatistical tools within a GIS platform. Logistic regression, weights of evidence, and probabilistic neural networks methods were used to analyze the weighted sum landslide riskscape models using ArcGIS and Spatial Data Modeler (ArcSDM). Results showed weights of evidence models performed better than both logistic regression and neural networks methods. Receiver Operator Characteristic (ROC) curves and Area Under the Curve validation tests were performed and found the weights of evidence model performed best in both posterior probability prediction and AUC validation. A fourth project was developed based on the limitations discovered during the analytical process evaluations from the riskscape model development and geostatistical analysis. This project reviewed the issues with data quality, the variations in results predicated on the input parameters within the analytical toolsets, and the issues surrounding open-source application tools. These limitations stress the importance of parameter selection in a geospatial analytical environment. These projects collectively determined methods for riskscape development related to landslide features. The models presented demonstrate the importance and influence of spatial distributions on landslide riskscapes. Based on the proposed conceptual framework of a spatial riskscape for landslides, weighted sum riskscapes can provide a basis for prioritization of resources for landslides. Ranked and human factor riskscapes indicate the need to provide planning and protection for areas at increased risk for landslides. These studies provide a context for riskscapes to further our understanding of the benefits and limitations of a quantitative riskscape approach. The development of a methodological framework for quantitative riskscape models provides an approach that can be applied to other hazards or study areas to identify areas of increased human-environment interaction. Riskscape models can then be evaluated to inform mitigation and land-use planning activities to reduce impacts of natural hazards in the anthropogenic environment.
dc.format.mediumborn digital
dc.format.mediumdoctoral dissertations
dc.identifierHicks_colostate_0053A_16484.pdf
dc.identifier.urihttps://hdl.handle.net/10217/232592
dc.languageEnglish
dc.language.isoeng
dc.publisherColorado State University. Libraries
dc.relation.ispartof2020-
dc.rightsCopyright and other restrictions may apply. User is responsible for compliance with all applicable laws. For information about copyright law, please see https://libguides.colostate.edu/copyright.
dc.subjectgeostatistics
dc.subjectriskscape
dc.subjectlandslide
dc.subjectgeographic information system
dc.titleLandslide riskscapes in the Colorado Front Range: a quantitative geospatial approach for modeling human-environment interactions
dc.typeText
dcterms.rights.dplaThis Item is protected by copyright and/or related rights (https://rightsstatements.org/vocab/InC/1.0/). You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).
thesis.degree.disciplineEcosystem Science and Sustainability
thesis.degree.grantorColorado State University
thesis.degree.levelDoctoral
thesis.degree.nameDoctor of Philosophy (Ph.D.)

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Hicks_colostate_0053A_16484.pdf
Size:
23.67 MB
Format:
Adobe Portable Document Format