Repository logo
 

Adjoint modeling to quantify stream flow changes due to aquifer pumping

dc.contributor.authorNeupauer, Roseanna M., author
dc.date.accessioned2022-09-20T12:16:59Z
dc.date.available2022-09-20T12:16:59Z
dc.date.issued2013-11
dc.descriptionNovember 2013.
dc.description.abstractAs populations grow and demand for water increases, new sources of water must be found. If groundwater resources are developed to meet these growing demands, the increased pumping of aquifers should not reduce flows in rivers to levels that would limit the availability of water for drinking water supply, irrigation, and riparian habitat. Stream depletion is the term for the change in the river flow rate due to pumping in an aquifer that is hydraulically connected to the river. In many regions of the U.S., a new well cannot be sited until it is shown that pumping the new well will not cause substantial stream depletion. Numerical simulations are typically used to quantify stream depletion. In the standard approach, two numerical simulations are run—one without pumping and one with pumping in a well at the proposed location. In both simulations, the water flux between the river and aquifer is calculated, and the difference between these fluxes is the stream depletion due to pumping at the proposed well location. If multiple well locations are considered, one addition simulation must be run for each additional potential well location; thus, this approach can be inefficient for siting new wells. The goal this research was to develop an adjoint-based modeling approach to efficiently quantify stream depletion due to aquifer pumping. In a single simulation of an adjoint model, stream depletion is calculated for a well at any location in the aquifer; thus, it is computationally efficient when the number of well locations or possible well locations is large. The adjoint approach was developed to be used with standard groundwater flow simulators, and therefore can be applied in practice. The research included rigorous development of the adjoint equation for calculating stream depletion in confined and unconfined aquifers with various models of groundwater/surface water interaction, along with numerical simulations to verify the adjoint equation. In addition, we used the adjoint method to investigate the sensitivity of stream depletion to the hydraulic conductivity of the stream channel, a parameter which is known to be uncertain.
dc.format.mediumborn digital
dc.format.mediumreports
dc.identifier.urihttps://hdl.handle.net/10217/235767
dc.languageEnglish
dc.language.isoeng
dc.publisherColorado State University. Libraries
dc.relationwwdl
dc.relation.ispartofCompletion Reports
dc.relation.ispartofCompletion report (Colorado Water Institute), no. 225
dc.rightsCopyright and other restrictions may apply. User is responsible for compliance with all applicable laws. For information about copyright law, please see https://libguides.colostate.edu/copyright.
dc.subjectstream depletion
dc.subjectstreamflow
dc.subjectadjoint method
dc.subjectstreambed conductance
dc.subjectnon-tributary
dc.subjectgroundwater
dc.subjectAquifers -- Measurement
dc.subjectGroundwater flow -- Measurement
dc.titleAdjoint modeling to quantify stream flow changes due to aquifer pumping
dc.typeText
dcterms.rights.dplaThis Item is protected by copyright and/or related rights (https://rightsstatements.org/vocab/InC/1.0/). You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
CWI_CR225.pdf
Size:
1.52 MB
Format:
Adobe Portable Document Format