Repository logo
 

Produced water quality characterization and prediction for Wattenberg field

dc.contributor.authorLi, Huishu, author
dc.contributor.authorCarlson, Kenneth H., advisor
dc.contributor.authorSharvelle, Sybil, committee member
dc.contributor.authorStednick, John, committee member
dc.date.accessioned2007-01-03T05:23:07Z
dc.date.available2007-01-03T05:23:07Z
dc.date.issued2013
dc.description.abstractProduced water is the major Exploration & Production waste in oil and gas production operations on most onshore and offshore platforms. There are some concerns about the environmental impacts of produced water, because of the potential danger of large volume of water disposal by shale plays. It is a complex mixture of dissolved and particulate inorganic and organic matters ranging from near freshwater quality to concentrated saline brine. The most abundant inorganic chemicals are calcium, magnesium, sodium and chloride. Other inorganic components, such as barium, strontium, boron, sulfate, carbonate and bicarbonate are also present in the produced water but at high concentrations. The dominant organic chemicals in most produced water are soluble low molecular weight organic acids and some aromatic hydrocarbons. Constituents of produced water vary a lot depending on a number of factors, including geographic locations, characteristics of formations (i.e. the depth of formation, porosity and permeability of formation rocks/sands, water content) and injected fracturing fluid. Since water is becoming a big issue in some arid areas and as regulations become more restrictive for disposal and reinjection, produced water reuse/recycle will be a solution to reduce the wastewater production and alleviate environmental effects. The main objective of this study was to statistically evaluate the produced water quality and to provide an assessment on the spatial distribution of specific groundwater quality parameters. Produced water samples were collected at 80 sample points (producing oil and gas wells) from May to August in 2012. pH, conductivity, alkalinity, turbidity, total organic carbon, total nitrogen, and barium were tested at Colorado State University's Environmental Engineering lab; total dissolved solids (TDS), calcium, magnesium, sodium, potassium, strontium, boron, chloride and sulfate were measured in ACZ Laboratories Inc., Colorado. All the produced water samples were acidic with pH ranging from 5.1-6.8. TDS, cations, anions and organic carbons tested in our study varied a lot. Maps showing the spatial distributions of these parameters were made using ArcGIS. Linear correlations between chloride, conductivity/TDS, and cations (log) were shown, which made it possible to estimate unknown parameters. Spatial and temporal trends of pH, TDS and total organics together with inner relationships of ion concentrations could allow us to make predictions of produced water qualities. This project was the first phase of the development of a GIS application that will provide a tool that can benefit industry when making decisions regarding produced water recycling.
dc.format.mediumborn digital
dc.format.mediummasters theses
dc.identifierLi_colostate_0053N_11585.pdf
dc.identifier.urihttp://hdl.handle.net/10217/79104
dc.languageEnglish
dc.language.isoeng
dc.publisherColorado State University. Libraries
dc.relation.ispartof2000-2019
dc.rightsCopyright and other restrictions may apply. User is responsible for compliance with all applicable laws. For information about copyright law, please see https://libguides.colostate.edu/copyright.
dc.subjectWattenberg field
dc.subjectwater quality
dc.subjectspatial interpolation
dc.subjectproduced water
dc.subjectGIS application
dc.titleProduced water quality characterization and prediction for Wattenberg field
dc.typeText
dcterms.rights.dplaThis Item is protected by copyright and/or related rights (https://rightsstatements.org/vocab/InC/1.0/). You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).
thesis.degree.disciplineCivil and Environmental Engineering
thesis.degree.grantorColorado State University
thesis.degree.levelMasters
thesis.degree.nameMaster of Science (M.S.)

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Li_colostate_0053N_11585.pdf
Size:
5.47 MB
Format:
Adobe Portable Document Format
Description: