Repository logo
 

Big Data decision support system

Date

2022

Authors

Ma, Tian J., author
Chong, Edwin, advisor
Simske, Steve, committee member
Herber, Daniel, committee member
Pezeshki, Ali, committee member

Journal Title

Journal ISSN

Volume Title

Abstract

Each day, the amount of data produced by sensors, social and digital media, and Internet of Things is rapidly increasing. The volume of digital data is expected to be doubled within the next three years. At some point, it might not be financially feasible to store all the data that is received. Hence, if data is not analyzed as it is received, the information collected could be lost forever. Actionable Intelligence is the next level of Big Data analysis where data is being used for decision making. This thesis document describes my scientific contribution to Big Data Actionable Intelligence generations. Chapter 1 consists of my colleagues and I's contribution in Big Data Actionable Intelligence Architecture. The proven architecture has demonstrated to support real-time actionable intelligence generation using disparate data sources (e.g., social media, satellite, newsfeeds). This work has been published in the Journal of Big Data. Chapter 2 shows my original method to perform real-time detection of moving targets using Remote Sensing Big Data. This work has also been published in the Journal of Big Data and it has received an issuance of a U.S. patent. As the Field-of-View (FOV) in remote sensing continues to expand, the number of targets observed by each sensor continues to increase. The ability to track large quantities of targets in real-time poses a significant challenge. Chapter 3 describes my colleague and I's contribution to the multi-target tracking domain. We have demonstrated that we can overcome real-time tracking challenges when there are large number of targets. Our work was published in the Journal of Sensors.

Description

Includes bibliographical references.
2022 Fall.

Rights Access

Subject

Citation

Associated Publications