Policy optimization for industrial benchmark using deep reinforcement learning
dc.contributor.author | Kumar, Anurag, author | |
dc.contributor.author | Anderson, Charles, advisor | |
dc.contributor.author | Chitsaz, Hamid, committee member | |
dc.contributor.author | Kirby, Michael, committee member | |
dc.date.accessioned | 2020-09-07T10:08:49Z | |
dc.date.available | 2020-09-07T10:08:49Z | |
dc.date.issued | 2020 | |
dc.description.abstract | Significant advancements have been made in the field of Reinforcement Learning (RL) in recent decades. Numerous novel RL environments and algorithms are mastering these problems that have been studied, evaluated, and published. The most popular RL benchmark environments produced by OpenAI Gym and DeepMind Labs are modeled after single/multi-player board, video games, or single-purpose robots and the RL algorithms modeling optimal policies for playing those games have even outperformed humans in almost all of them. However, the real-world applications using RL is very limited, as the academic community has limited access to real industrial data and applications. Industrial Benchmark (IB) is a novel RL benchmark motivated by Industrial Control problems with properties such as continuous state and action spaces, high dimensionality, partially observable state space, delayed effects combined with complex heteroscedastic stochastic behavior. We have used Deep Reinforcement Learning (DRL) algorithms like Deep Q-Networks (DQN) and Double-DQN (DDQN) to study and model optimal policies on IB. Our empirical results show various DRL models outperforming previously published models on the same IB. | |
dc.format.medium | born digital | |
dc.format.medium | masters theses | |
dc.identifier | Kumar_colostate_0053N_16226.pdf | |
dc.identifier.uri | https://hdl.handle.net/10217/212061 | |
dc.language | English | |
dc.language.iso | eng | |
dc.publisher | Colorado State University. Libraries | |
dc.relation.ispartof | 2020- | |
dc.rights | Copyright and other restrictions may apply. User is responsible for compliance with all applicable laws. For information about copyright law, please see https://libguides.colostate.edu/copyright. | |
dc.subject | deep reinforcement learning | |
dc.subject | industrial benchmark | |
dc.subject | DDQN | |
dc.subject | q-learning | |
dc.subject | DQN | |
dc.title | Policy optimization for industrial benchmark using deep reinforcement learning | |
dc.type | Text | |
dcterms.rights.dpla | This Item is protected by copyright and/or related rights (https://rightsstatements.org/vocab/InC/1.0/). You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s). | |
thesis.degree.discipline | Computer Science | |
thesis.degree.grantor | Colorado State University | |
thesis.degree.level | Masters | |
thesis.degree.name | Master of Science (M.S.) |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Kumar_colostate_0053N_16226.pdf
- Size:
- 1.07 MB
- Format:
- Adobe Portable Document Format