Effects of groundwater withdrawal and drought on native fishes and their habitats in the Arikaree River, Colorado
Date
2009
Journal Title
Journal ISSN
Volume Title
Abstract
Great Plains streams are harsh environments for fishes, and are increasingly degraded by human-caused impacts, including overuse of groundwater. Plains stream fishes are in decline, due in part to interactions between natural drought and anthropogenic stream drying. To address these issues, in a collaborative study we developed a model of groundwater and surface water that predicted fish habitat quantity within the Arikaree River basin in eastern Colorado into the future, based upon three scenarios of land and water use (e.g., irrigation pumping). We found that under the status quo of pumping, >50% of remaining refuge habitats in the wettest segment of river will be dry in 35 years, and will be isolated in a 1-km fragment along the river. Loss of critical habitats due to stream dewatering, and subsequent negative effects on native fishes, are not unique to eastern Colorado but are in fact widespread across the western Great Plains. Secondly, to set this research in context, I conducted a review of metapopulation and metacommunity research in the stream fish literature. Stream fish populations and communities are spatially structured at multiple scales, and easily fragmented. To date, this spatial structure has not been incorporated into stream fish population and community models. However, recent research in this area should improve our understanding of processes that regulate stream fish assemblages. Next, I developed a spawning phenology for Arikaree River fishes and found that cumulative growing season degree days had the strongest effect on hatching initiation. Occupancy by larvae of most species was related to local scale spawning habitat characteristics (e.g., habitat size and type). Among years, colonization and extinction rates for individual species differed in segments that were fed by groundwater, versus those that were not, and were influenced by climate variability among years. Last, I investigated when and where the threatened brassy minnow, Hybognathus hankinsoni, spawns, and what environmental factors influence growth and survival of this species within and among years. Interannual variability in climate, and the hydrologic context of segments along the riverscape, had a strong influence on habitat availability and recruitment of brassy minnow in the Arikaree River.
Description
Rights Access
Subject
drought
groundwater withdrawal
habitat loss
native fishes
ecology
environmental science
aquatic sciences