Repository logo
 

The skill of managers and the wisdom of herds: examining an alternative approach to grazing management in larkspur habitat

Date

2019

Authors

Jablonski, Kevin E., author
Meiman, Paul J., advisor
Boone, Randall B., committee member
Fernández-Giménez, María E., committee member
Ocheltree, Troy W., committee member

Journal Title

Journal ISSN

Volume Title

Abstract

The many species of larkspur (Delphinium spp. L.) are among the most dangerous poisonous plants on rangelands in the western United States, causing death losses estimated at 2-5% (up to 15%) per year for cattle grazing in larkspur habitat. Research has estimated the value of these losses at $234 million per year. Other effects, such as altered grazing management practices and consequent lost forage quantity and quality, are significant but poorly understood. Current best management practice recommendations stress seasonal avoidance of pastures with larkspur present, with little evidence that this is practical or ultimately effective. Alternative approaches to addressing this complex challenge are difficult to design, test, and apply due to the threat of dead livestock. In this dissertation I explore an alternative approach based on the idea that it may be possible to manage cattle grazing such that no individual consumes a lethal dose, regardless of timing of grazing or larkspur density. This idea was inspired by producers past and present who have reported such success. I examine this hypothesis using agent-based models and a field experiment with Geyer's larkspur (D. geyeri Greene), the focal species throughout this research. Chapter 2 presents a conceptual model that situates this work within the broader context of livestock grazing management and rangeland science. This synthesis also highlights the potential for conceptual models to aid in the design, application, communication, and consilience of research in rangelands. Drawing on a wide range of work, this model challenges the discipline of rangeland science to integrate a broader array of methods and epistemologies to create knowledge sufficient to the complexity of the systems under study. Agent-based models (ABMs) provide an effective method of testing alternate management strategies without risk to livestock. ABMs are especially useful for modeling complex systems such as livestock grazing management and allow for realistic bottom-up encoding of cattle behavior. In Chapter 3, I introduce a spatially-explicit, behavior-based ABM of cattle grazing in a pasture with a dangerous amount of D. geyeri. This model tests the role of herd cohesion and stocking density in larkspur intake, finds that both are key drivers of larkspur-induced toxicosis, and indicates that alteration of these factors within realistic bounds can mitigate risk. Crucially, the model points to herd cohesion, which has received little attention in the discipline, as playing an important role in reducing lethal acute toxicosis. As the first agent-based model to simulate grazing behavior at realistic scales, this study also demonstrates the tremendous potential of ABMs to illuminate grazing management dynamics, including fundamental aspects of livestock behavior amidst ecological heterogeneity. Chapter 3 raises the question of the potential response of larkspur to being grazed. In Chapter 4, I examine the response of D. geyeri to two seasons of 25% or 75% aboveground plant mass removal. The 75% treatment led to significantly lower alkaloid concentrations (mg•g-1) and pools (mg per plant), while the 25% treatment had a lesser effect. Combined with lessons from previous studies, this indicates that Geyer's larkspur plants subject to aboveground mass removal such as may occur via grazing can be expected to become significantly less dangerous to cattle. We suggest that the mechanisms for this reduction are both alkaloid removal and reduced belowground root mass, as significant evidence indicates that alkaloids are synthesized and stored in the roots. The most common explanations for the evolution and persistence of herd behavior in large herbivores relate to decreased risk of predation. However, poisonous plants such as larkspur can present a threat comparable to predation. Chapters 3 and 4 point to the cattle herd itself as the potential solution to this seemingly intractable challenge and suggest that larkspur and forage patchiness may drive deaths. In Chapter 5, I present an agent-based model that incorporates neutral landscape models to assess the interaction between plant patchiness and herd behavior within the context of poisonous plants as predator and cattle as prey. The simulation results indicate that larkspur patchiness is indeed a driver of toxicosis and that highly cohesive herds can greatly reduce the risk of death in even the most dangerous circumstances. By placing the results in context with existing theories about the utility of herds, I demonstrate that grouping in large herbivores can be an adaptive response to patchily distributed poisonous plants. Lastly, the results hold significant management-relevant insight, both for cattle producers managing grazing in larkspur habitat and in general as a call to reconsider the manifold benefits of herd behavior among domestic herbivores. The findings in this dissertation build a strong case for an alternative approach to grazing management in larkspur habitat but fall short of actionable recommendations. For one, this is because a one-size-fits-all solution that would work across the great diversity of habitats and management systems in which larkspur is found is unlikely. Instead, these findings must be placed in context with existing knowledge and the complex multiscale decision-making processes of producers. Future work will thus focus on improving our understanding of the diverse set of management circumstances under which the many species of problematic larkspur are found.

Description

Rights Access

Subject

Citation

Associated Publications