Repository logo
 

Dataset associated with "Near-Cloud Aerosol Retrieval Using Machine Learning Techniques, and Implied Direct Radiative Effects"

dc.contributor.authorYang, C. Kevin
dc.contributor.authorChiu, Christine
dc.contributor.authorMarshak, Alexander
dc.contributor.authorFeingold, Graham
dc.contributor.authorVárnai, Tamás
dc.contributor.authorWen, Guoyong
dc.contributor.authorYamaguchi, Takanobu
dc.contributor.authorvan Leeuwen, Peter Jan
dc.date.accessioned2022-09-19T18:23:06Z
dc.date.available2022-09-19T18:23:06Z
dc.date.issued2022
dc.descriptionThe dataset contains two parts: 1) Large eddy simulation (LES) output 2) a module that performs all-clear-sky aerosol retrieval using a machine-learning-based model. There are also example data and a script to demonstrate how to use the module.en_US
dc.descriptionDepartment of Atmospheric Science
dc.description.abstractThere is a lack of satellite-based aerosol retrievals in the vicinity of low-topped clouds, mainly because reflectance from aerosols is overwhelmed by three-dimensional cloud radiative effects. To account for cloud radiative effects on reflectance observations, we develop a Convolutional Neural Network and retrieve aerosol optical depth (AOD) with 100–500 m horizontal resolution for all cloud-free regions regardless of their distances to clouds. The retrieval uncertainty is 0.01+5%AOD, and the mean bias is approximately –2%. In an application to satellite observations, aerosol hygroscopic growth due to humidification near clouds enhances AOD by 100% in regions within 1 km of cloud edges. The humidification effect leads to an overall 55% increase in the clear-sky aerosol direct radiative effect. Although this increase is based on a case study, it highlights the importance of aerosol retrievals in near-cloud regions, and the need to incorporate the humidification effect in radiative forcing estimates.en_US
dc.description.sponsorshipNASA Projects 80NSSC20K0596.en_US
dc.description.sponsorshipNASA Projects 80NSSC20K1719.en_US
dc.description.sponsorshipCooperative Institute for Research in the Atmosphere (CIRA).en_US
dc.description.sponsorshipU.S. Department of Energy, Office of Science, Atmospheric System Research Program Interagency Award 89243020SSC000055.en_US
dc.description.sponsorshipEuropean Research Council under the CUNDA project 694509.en_US
dc.format.mediumTXT
dc.format.mediumMATLAB
dc.format.mediumHDF5
dc.format.mediumPY
dc.format.mediumNetCDF
dc.identifier.urihttps://hdl.handle.net/10217/235755
dc.identifier.urihttp://dx.doi.org/10.25675/10217/235755
dc.languageEnglishen_US
dc.language.isoengen_US
dc.publisherColorado State University. Librariesen_US
dc.relation.ispartofResearch Data
dc.relation.isreferencedbyYang, C. K., Chiu, J. C., Marshak, A., Feingold, G., Várnai, T., Wen, G., et al. (2022). Near-cloud aerosol retrieval using machine learning techniques, and implied direct radiative effects. Geophysical Research Letters, 49, e2022GL098274. https://doi.org/10.1029/2022GL098274
dc.rightsPython code is distributed under an MIT License (see LICENSE.txt file).
dc.rights.licenseData are distributed under the terms and conditions of the Creative Commons CC BY: Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/).
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectAerosol direct radiative effecten_US
dc.subjectAerosol remote sensingen_US
dc.subjectMachine Learningen_US
dc.titleDataset associated with "Near-Cloud Aerosol Retrieval Using Machine Learning Techniques, and Implied Direct Radiative Effects"en_US
dc.typeDataseten_US

Files

Original bundle
Now showing 1 - 5 of 11
No Thumbnail Available
Name:
README.txt
Size:
3.95 KB
Format:
Plain Text
Description:
No Thumbnail Available
Name:
ID1.nc
Size:
775.24 MB
Format:
Unknown data format
Description:
The LES simulation output named "ID1" from RICO field campaign; the output time is 50-hr
No Thumbnail Available
Name:
ID2.nc
Size:
787.55 MB
Format:
Unknown data format
Description:
The LES simulation output named "ID2" from RICO field campaign; the output time is 54-hr
No Thumbnail Available
Name:
ID3.nc
Size:
900.06 MB
Format:
Unknown data format
Description:
The LES simulation output named "ID3" from 7SEAS field campaign simulated without vertical wind shear
No Thumbnail Available
Name:
ID4.nc
Size:
900.06 MB
Format:
Unknown data format
Description:
The LES simulation output named "ID4" from 7SEAS field campaign simulated with vertical wind shear
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.05 KB
Format:
Item-specific license agreed upon to submission
Description: