Repository logo
 

Three regional climatologies of marine stratocumulus characteristics using the A-train satellite data

dc.contributor.authorRam, Jessica A., author
dc.contributor.authorVonder Haar, Thomas H., advisor
dc.contributor.authorMiller, Steven D., advisor
dc.contributor.authorKrueger, David A., committee member
dc.contributor.authorSchubert, Wayne H., committee member
dc.date.accessioned2022-07-11T20:01:54Z
dc.date.available2022-07-11T20:01:54Z
dc.date.issued2010
dc.description.abstractLow-level marine stratocumulus clouds are known to play a large role in the Earth's radiation budget. They also present challenges to forecasts using numerical models. While many studies have attempted to model or explain the complicated microphysical aspects of these clouds, it is important to understand the broader macrophysical relationships between the precipitation and radiative properties of marine stratocumulus. In this thesis, data for these clouds over three subtropical regions has been gathered for the time period spanning from June 15, 2006 to February 15, 2009. The data come from NASA' s A-train satellites, CloudSat, CALIPSO, and Aqua, and some of this data is even compared to buoy observations off of the Pacific South American coast. With marine boundary layer clouds defined by cloud top heights below 2 km in the combined CloudSat-CALIPSO dataset, spatial and temporal averages are calculated for cloud and precipitation frequency as the various combinations of cloud detection are examined as well. Typical values for longwave and shortwave fluxes and cloud optical depth are also obtained for one of the regions off of the South American coast, some of which are compared to in-situ buoy data. Lidar data from CALIPSO is key to detecting a majority of marine stratocumulus while the radar detects about 35% of marine stratocumulus. On average 12% of the marine stratocumulus are precipitating and this accounts for about 1/3 of the radar-detected clouds. Radar detection of marine stratocumulus and precipitation also increased for the nighttime passes. This research also shows the spatial and temporal seasonal and annual averages for cloud and precipitation amounts in each region. We found the South American region to be the cloudiest location with the most frequently precipitating marine stratocumulus. Marine stratocumulus clouds tend to increase the surface downwelling longwave flux by about 100 W m-2 with respect to clear sky while decreasing the downwelling shortwave flux by about 900 W m-2. These estimated flux values only sometimes agree with nearby buoy data for the longwave fluxes and very rarely agree with the buoy shortwave fluxes, owing to spatial heterogeneity of the cloud field. Overall, the results provide new information about the precipitation processes of marine stratocumulus and its effects over an extended period of time for three subtropical locations.
dc.format.mediummasters theses
dc.identifier.urihttps://hdl.handle.net/10217/235432
dc.languageEnglish
dc.language.isoeng
dc.publisherColorado State University. Libraries
dc.relationCatalog record number (MMS ID): 991014520679703361
dc.relationQC921.43.S8 R36 2010
dc.relation.ispartof2000-2019
dc.rightsCopyright and other restrictions may apply. User is responsible for compliance with all applicable laws. For information about copyright law, please see https://libguides.colostate.edu/copyright.
dc.subject.lcshStratus -- Tropics -- Remote sensing
dc.subject.lcshSatellite meteorology -- Tropics
dc.subject.lcshMeteorological satellites -- Tropics
dc.subject.lcshOcean-atmosphere interaction
dc.titleThree regional climatologies of marine stratocumulus characteristics using the A-train satellite data
dc.typeText
dcterms.rights.dplaThis Item is protected by copyright and/or related rights (https://rightsstatements.org/vocab/InC/1.0/). You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).
thesis.degree.disciplineAtmospheric Science
thesis.degree.grantorColorado State University
thesis.degree.levelMasters
thesis.degree.nameMaster of Science (M.S.)

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ETDF_2010_Summer_Ram_Jessica_A_DIP.pdf
Size:
9.77 MB
Format:
Adobe Portable Document Format