Repository logo
 

Cryo-electron microscopy of cloneable inorganic nanoparticles

dc.contributor.authorGuilliams, Bradley Forrest, author
dc.contributor.authorAckerson, Christopher J., advisor
dc.contributor.authorSambur, Justin, committee member
dc.contributor.authorCrans, Debbie, committee member
dc.contributor.authorStasevich, Tim, committee member
dc.date.accessioned2024-12-23T12:00:26Z
dc.date.available2025-12-20
dc.date.issued2024
dc.description.abstractOur understanding of biology is best understood through direct, empirical measurements of biomacromolecules and biological systems. The functions of proteins are directly linked to both their structure and their intracellular organizations. Single particle cryo-electron microscopy has revolutionized modern structural biology by enabling the structural determination of proteins and protein-complexes in purified samples without the need to form large crystals as required by X-ray crystallography. With single particle cryo-EM, atomic and near-atomic resolution structures are now routine which offer insight into the functions of biomacromolecules. While these insights are invaluable, there is increasing momentum for integrative structural biology which aims to accomplish structural determination of biomacromolecules in their cellular, tissue, or organismal context. There remains a grand challenge in biological imaging where biological materials have low innate contrast. Cloneable contrast labels that impart contrast to discrete protein densities do not reliably exist for cryo-electron microscopy. In contrast, fluorescent proteins are reliable and routine for localizing fluorescent protein / protein of interest genetic fusions in visible-light microscopies. We have proposed and developed intracellularly synthesized inorganic nanoparticles called 'cloneable nanoparticles' as a solution to this grand challenge. Cloneable nanoparticles are inorganic nanoparticles, synthesized by a protein/peptide (or combination thereof) which controls and defines the properties of the inorganic nanoparticle. Here we have defined the cloneable nanoparticle paradigm and described the development of a cloneable selenium nanoparticle. Further, we show the application of the cloneable selenium nanoparticle as a cloneable contrast label for biological electron microscopy and correlative light-electron microscopy and detail progress towards adapting the cloneable selenium nanoparticle for use in cryo-electron tomography. With the aim to later expand cloneable nanoparticles to include a myriad of orthogonal cloneable contrast labels (analogous to different colored fluorophores), and to gain understanding about enzymatic nanoparticle synthesis, a single particle cryo-EM study is on-going. Lastly, we have shown the application of directed evolution for cloneable nanoparticles, suggesting that this is a viable path, alongside rational protein design, towards developing future cloneable nanoparticle cryo-electron microscopy labels.
dc.format.mediumborn digital
dc.format.mediumdoctoral dissertations
dc.identifierGuilliams_colostate_0053A_18771.pdf
dc.identifier.urihttps://hdl.handle.net/10217/239908
dc.languageEnglish
dc.language.isoeng
dc.publisherColorado State University. Libraries
dc.relation.ispartof2020-
dc.rightsCopyright and other restrictions may apply. User is responsible for compliance with all applicable laws. For information about copyright law, please see https://libguides.colostate.edu/copyright.
dc.rights.accessEmbargo expires: 12/20/2025.
dc.subjectcloneable inorganic nanoparticles
dc.subjectcloneable nanoparticles
dc.subjectelectron microscopy
dc.subjectcloneable labels
dc.subjectCLEM
dc.subjectcryo-electron microscopy
dc.titleCryo-electron microscopy of cloneable inorganic nanoparticles
dc.typeText
dcterms.embargo.expires2025-12-20
dcterms.embargo.terms2025-12-20
dcterms.rights.dplaThis Item is protected by copyright and/or related rights (https://rightsstatements.org/vocab/InC/1.0/). You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).
thesis.degree.disciplineChemistry
thesis.degree.grantorColorado State University
thesis.degree.levelDoctoral
thesis.degree.nameDoctor of Philosophy (Ph.D.)

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Guilliams_colostate_0053A_18771.pdf
Size:
13.68 MB
Format:
Adobe Portable Document Format