Integration of WSR-88D and GOES-8 data for detecting and forecasting storm initiation
dc.contributor.author | Roberts, Rita Dineen, author | |
dc.contributor.author | Rutledge, Steven A., author | |
dc.date.accessioned | 2022-02-24T18:45:38Z | |
dc.date.available | 2022-02-24T18:45:38Z | |
dc.date.issued | 1998 | |
dc.description | Summer 1998. | |
dc.description | Also issued as Rita Dineen Robert's thesis (M.S.) -- Colorado State University, 1998. | |
dc.description.abstract | Several studies utilizing research radar have documented the importance of surface convergence boundaries in initiation of convection. Detection and tracking of these boundaries provides valuable information for forecasting thunderstorm occurrence. The presence of cumulus clouds above these boundaries is believed to increase the probability that thunderstorm. development could occur. With the advent of the GOES-8 satellite 15 min update rate and higher spatial resolution, it is now possible to detect and track cumulus cloud growth more closely. The focus of this thesis is to show how operational WSR-88O radar and GOES-8 satellite data can be used together to provide information on the growth of cumulus clouds into thunderstorms, based on radardetected, boundary layer covergence features, cloud-top brightness temperatures, and change in reflectivity echo intensity with time. The evolution of cumulus clouds over a spectrum of radar-detected, boundary layer features have been examined. While thunderstorms did form above horizontal convective rolls in the absence of any additional surface forcing, the most intense storms initiated above gust fronts, gust front interaction with horizontal rolls, and above stationary convergence zones. In all cases presented, cloud growth was evident in the satellite data in the form of decreasing cloud top temperatures, prior to the first detection of 10-20 dBZ radar echoes aloft. Sub-freezing cloud top temperatures were found to be precursors to the start of precipitation phase in clouds, with cloud top temperatures below 0° C occurring 15 min prior to the detection of 20 dBZ echoes, and 30 min prior to the detection of 30 dBZ echoes. The rate of cloud top temperature change was found to be important for discriminating between slow and rapid storm growth. Results of this thesis show that both satellite and radar data can be exploited to provide up to 30 min additional lead time in issuing forecasts of thunderstorm initiation, by monitoring the data in an automated way. | |
dc.description.sponsorship | Sponsored by the National Science Foundation under grant ATM-9321361. | |
dc.format.medium | reports | |
dc.identifier.uri | https://hdl.handle.net/10217/234402 | |
dc.language | English | |
dc.language.iso | eng | |
dc.publisher | Colorado State University. Libraries | |
dc.relation | Catalog record number (MMS ID): 991005298399703361 | |
dc.relation | QC852 .C6 no. 666 | |
dc.relation.ispartof | Atmospheric Science Papers (Blue Books) | |
dc.relation.ispartof | Atmospheric science paper, no. 666 | |
dc.rights | Copyright and other restrictions may apply. User is responsible for compliance with all applicable laws. For information about copyright law, please see https://libguides.colostate.edu/copyright. | |
dc.subject | Thunderstorm forecasting | |
dc.subject | Cumulus | |
dc.subject | Satellite meteorology | |
dc.subject | Radar meteorology | |
dc.title | Integration of WSR-88D and GOES-8 data for detecting and forecasting storm initiation | |
dc.type | Text | |
dcterms.rights.dpla | This Item is protected by copyright and/or related rights (https://rightsstatements.org/vocab/InC/1.0/). You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s). |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- FACF_0666_Bluebook_DIP.pdf
- Size:
- 24.83 MB
- Format:
- Adobe Portable Document Format