Techno-economic analysis of advanced small modular nuclear reactors
dc.contributor.author | Asuega-Souza, Anthony, author | |
dc.contributor.author | Quinn, Jason, advisor | |
dc.contributor.author | Simske, Steve, committee member | |
dc.contributor.author | Bandhauer, Todd, committee member | |
dc.date.accessioned | 2022-08-29T10:16:16Z | |
dc.date.available | 2022-08-29T10:16:16Z | |
dc.date.issued | 2022 | |
dc.description.abstract | Small modular nuclear reactors (SMRs) represent a robust opportunity to develop low-carbon and reliable power with the potential to meet cost parity with conventional power systems. This study presents a detailed, bottom-up economic evaluation of a 12x77 MWe (924 MWe total) light-water SMR (LW-SMR) plant, a 4x262 MWe (1,048 MWe) gas-cooled SMR (GC-SMR) plant, and a 5x200 MWe (1,000 MWe total) molten salt SMR (MS-SMR) plant. Cost estimates are derived from equipment costs, labor hours, material inputs, and process-engineering models. The advanced SMRs are compared to natural gas combined cycle plants and a conventional large reactor. Overnight capital cost (OCC) and levelized cost of energy (LCOE) estimates are developed. The OCC of the LW-SMR, GC-SMR, and MS-SMR are found to be $4,844/kW, $4,355/kW, and $3,985/kW respectively. The LCOE of the LW-SMR, GC-SMR, and MS-SMR are found to be $89.6/MWh, $81.5/MWh, and $80.6/MWh respectively. A Monte Carlo analysis is performed, for which the OCC and construction time of the LW-SMR is found to have a lower mean and standard deviation than a conventional large reactor. The LW-SMR OCC is found to have a mean of $5,233/kW with a standard deviation of $658/kW and a 90% probability of remaining between $4,254/kW and $6,399/kW, while the construction duration is found to have a mean of 4.5 years with a standard deviation of 0.8 years and a 90% probability of remaining between 3.4 and 6.0 years. The economic impact of economies of scale, simplification, modularization, and construction time are evaluated for SMRs. Policy implications for direct capital subsidies and a carbon tax on natural gas emissions are additionally explored. | |
dc.format.medium | born digital | |
dc.format.medium | masters theses | |
dc.identifier | AsuegaSouza_colostate_0053N_17378.pdf | |
dc.identifier.uri | https://hdl.handle.net/10217/235634 | |
dc.language | English | |
dc.language.iso | eng | |
dc.publisher | Colorado State University. Libraries | |
dc.relation.ispartof | 2020- | |
dc.rights | Copyright and other restrictions may apply. User is responsible for compliance with all applicable laws. For information about copyright law, please see https://libguides.colostate.edu/copyright. | |
dc.subject | techno-economic analysis | |
dc.subject | small modular reactors | |
dc.title | Techno-economic analysis of advanced small modular nuclear reactors | |
dc.type | Text | |
dcterms.rights.dpla | This Item is protected by copyright and/or related rights (https://rightsstatements.org/vocab/InC/1.0/). You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s). | |
thesis.degree.discipline | Mechanical Engineering | |
thesis.degree.grantor | Colorado State University | |
thesis.degree.level | Masters | |
thesis.degree.name | Master of Science (M.S.) |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- AsuegaSouza_colostate_0053N_17378.pdf
- Size:
- 1.25 MB
- Format:
- Adobe Portable Document Format