A framework for profiling spatial variability in the performance of classification models
Date
2024-04-03
Journal Title
Journal ISSN
Volume Title
Abstract
Scientists use models to further their understanding of phenomena and inform decision-making. A confluence of factors has contributed to an exponential increase in spatial data volumes. In this study, we describe our methodology to identify spatial variation in the performance of classification models. Our methodology allows tracking a host of performance measures across different thresholds for the larger, encapsulating spatial area under consideration. Our methodology ensures frugal utilization of resources via a novel validation budgeting scheme that preferentially allocates observations for validations. We complement these efforts with a browser-based, GPU-accelerated visualization scheme that also incorporates support for streaming to assimilate validation results as they become available.
Description
Rights Access
Subject
spatial data
model validations
classification
visual analytics