Simultaneous phosphorus and nitrogen removal using aluminum based water treatment residual
Date
2011
Authors
Liang, Qian, author
Carlson, Kenneth, advisor
Davis, Jessica, committee member
Sharvelle, Sybil, committee member
Journal Title
Journal ISSN
Volume Title
Abstract
In this study, an aluminum-based water treatment residual (Al-WTR) from a local water treatment facility was investigated for its capacity for phosphorus (P) and nitrogen (N) removal in wastewater. Characterization results indicated that Al-WTR had a high content of amorphous aluminum hydroxide, which is able to bond phosphorus in solution mainly via ligand exchange. Also, Al-WTR was found to be rich in bio-available carbon, which can facilitate biological denitrification for N removal. Batch equilibrium tests analyzed the P sorption parameters according to Langmuir and Freundlich isotherms. The results of the maximum sorption capacity were 4.498, 3.258 and 2.038 g/kg at pH values of 4, 7, and 9 respectively, indicating that P sorption was favored at lower pH conditions. However, the sorption capacity results may not reflect that in continuous-flow conditions. Al-WTR was shown to be a more effective sorbent for orthophosphate phosphorus (ortho-P) than total phosphorus (TP), but still had promising removals (greater than 90%) to both. Simultaneous P and N removal in wastewater was tested in column experiments in a continuous-flow mode. 95.9% removal of ortho-P and 90.0 % removal were achieved. Also, NO3- removal was highly efficient (99.6%). In sum, using Al-WTR as a P and N mitigation agent is a feasible and sustainable technology, and could be applied in P and N control practices in point-sources and non-point sources.
Description
Rights Access
Subject
nitrogen
nutrient control
phosphorus
water treatment residual