Repository logo
 

Assessment and improvement of automated program repair mechanisms and components

dc.contributor.authorAssiri, Fatmah Yousef, author
dc.contributor.authorBieman, James M., advisor
dc.contributor.authorGhosh, Sudipto, committee member
dc.contributor.authorFrance, Robert B., committee member
dc.contributor.authorCallahan, Gerald, committee member
dc.date.accessioned2015-08-27T03:56:56Z
dc.date.available2015-08-27T03:56:56Z
dc.date.issued2015
dc.description.abstractAutomated program repair (APR) refers to techniques that locate and fix software faults automatically. An APR technique locates potentially faulty locations, then it searches the space of possible changes to select a program modification operator (PMO). The selected PMO is applied to a potentially faulty location thereby creating a new version of the faulty program, called a variant. The variant is validated by executing it against a set of test cases, called repair tests, which is used to identify a repair. When all of the repair tests are successful, the variant is considered a potential repair. Potential repairs that have passed a set of regression tests in addition to those included in the repair tests are deemed to be validated repairs. Different mechanisms and components can be applied to repair faults. APR mechanisms and components have a major impact on APR effectiveness, repair quality, and performance. APR effectiveness is the ability to and potential repairs. Repair quality is defined in terms of repair correctness and maintainability, where repair correctness indicates how well a potential repaired program retains required functionality, and repair maintainability indicates how easy it is to understand and maintain the generated potential repair. APR performance is the time and steps required to find a potential repair. Existing APR techniques can successfully fix faults, but the changes inserted to fix faults can have negative consequences on the quality of potential repairs. When a potential repair is executed against tests that were not included in the repair tests, the "repair" can fail. Such failures indicate that the generated repair is not a validated repair due to the introduction of other faults or the generated potential repair does not actually fix the real fault. In addition, some existing techniques add extraneous changes to the code that obfuscate the program logic and thus reduce its maintainability. APR effectiveness and performance can be dramatically degraded when an APR technique applies many PMOs, uses a large number of repair tests, locates many statements as potentially faulty locations, or applies a random search algorithm. This dissertation develops improved APR techniques and tool set to help optimize APR effectiveness, the quality of generated potential repairs, and APR performance based on a comprehensive evaluation of APR mechanisms and components. The evaluation involves the following: (1) the PMOs used to produce repairs, (2) the properties of repair tests used in the APR, (3) the fault localization techniques employed to identify potentially faulty statements, and (4) the search algorithms involved in the repair process. We also propose a set of guided search algorithms that guide the APR technique to select PMO that fix faults, which thereby improve APR effectiveness, repair quality, and performance. We performed a set of evaluations to investigate potential improvements in APR effectiveness, repair quality, and performance. APR effectiveness of different program modification operators is measured by the percent of fixed faults and the success rate. Success rate is the percentage of trials that result in potential repairs. One trial is equivalent to one execution of the search algorithm. APR effectiveness of different fault localization techniques is measured by the ability of a technique to identify actual faulty statements, and APR effectiveness of various repair test suites and search algorithms is also measured by the success rate. Repair correctness is measured by the percent of failed potential repairs for 100 trials for a faulty program, and the average percent of failed regression tests for N potential repairs for a faulty program; N is the number of potential repairs generated for 100 trials. Repair maintainability is measured by the average size of a potential repair, and the distribution of modifications throughout a potential repaired program. APR performance is measured by the average number of generated variants and the average total time required to find potential repairs. We built an evaluation framework creating a configurable mutation-based APR (MUT-APR) tool. MUT-APR allows us to vary the APR mechanisms and components. Our key findings are the following: (1) simple PMOs successfully fix faulty expression operators and improve the quality of potential repairs compared to other APR techniques that use existing code to repair faults, (2) branch coverage repair test suites improve APR effectiveness and repair quality significantly compared to repair test suites that satisfy statement coverage or random testing; however, they lowered APR performance, (3) small branch coverage repair test suites improved APR effectiveness, repair quality, and performance significantly compared to large branch coverage repair tests, (4) the Ochiai fault localization technique always identifies seeded faulty statements with an acceptable performance, and (5) guided random search algorithm improves APR effectiveness, repair quality, and performance compared to all other search algorithms; however, the exhaustive search algorithms is guaranteed a potential repair that failed fewer regression tests with a significant performance degradation as the program size increases. These improvements are incorporated into the MUT-APR tool for use in program repairs.
dc.format.mediumborn digital
dc.format.mediumdoctoral dissertations
dc.identifierAssiri_colostate_0053A_12843.pdf
dc.identifier.urihttp://hdl.handle.net/10217/166889
dc.languageEnglish
dc.language.isoeng
dc.publisherColorado State University. Libraries
dc.relation.ispartof2000-2019
dc.rightsCopyright and other restrictions may apply. User is responsible for compliance with all applicable laws. For information about copyright law, please see https://libguides.colostate.edu/copyright.
dc.subjectrepair quality
dc.subjectautomated program repair
dc.subjectrepair tests properties
dc.subjectsoftware engineering
dc.subjectand performance
dc.subjectsearch algorithms
dc.subjectfault localization techniques
dc.subjectAPR effectiveness
dc.titleAssessment and improvement of automated program repair mechanisms and components
dc.typeText
dcterms.rights.dplaThis Item is protected by copyright and/or related rights (https://rightsstatements.org/vocab/InC/1.0/). You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).
thesis.degree.disciplineComputer Science
thesis.degree.grantorColorado State University
thesis.degree.levelDoctoral
thesis.degree.nameDoctor of Philosophy (Ph.D.)

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Assiri_colostate_0053A_12843.pdf
Size:
3.22 MB
Format:
Adobe Portable Document Format