Anomaly detection with machine learning for automotive cyber-physical systems
dc.contributor.author | Thiruloga, Sooryaa Vignesh, author | |
dc.contributor.author | Pasricha, Sudeep, advisor | |
dc.contributor.author | Kim, Ryan, committee member | |
dc.contributor.author | Ray, Indrakshi, committee member | |
dc.date.accessioned | 2022-05-30T10:21:11Z | |
dc.date.available | 2022-05-30T10:21:11Z | |
dc.date.issued | 2022 | |
dc.description.abstract | Today's automotive systems are evolving at a rapid pace and there has been a seismic shift in automotive technology in the past few years. Automakers are racing to redefine the automobile as a fully autonomous and connected system. As a result, new technologies such as advanced driver assistance systems (ADAS), vehicle-to-vehicle (V2V), 5G vehicle to infrastructure (V2I), and vehicle to everything (V2X), etc. have emerged in recent years. These advances have resulted in increased responsibilities for the electronic control units (ECUs) in the vehicles, requiring a more sophisticated in-vehicle network to address the growing communication needs of ECUs with each other and external subsystems. This in turn has transformed modern vehicles into a complex distributed cyber-physical system. The ever-growing connectivity to external systems in such vehicles is introducing new challenges, related to the increasing vulnerability of such vehicles to various cyber-attacks. A malicious actor can use various access points in a vehicle, e.g., Bluetooth and USB ports, telematic systems, and OBD-II ports, to gain unauthorized access to the in-vehicle network. These access points are used to gain access to the network from the vehicle's attack surface. After gaining access to the in-vehicle network through an attack surface, a malicious actor can inject or alter messages on the network to try to take control of the vehicle. Traditional security mechanisms such as firewalls only detect simple attacks as they do not have the ability to detect more complex attacks. With the increasing complexity of vehicles, the attack surface increases, paving the way for more complex and novel attacks in the future. Thus, there is a need for an advanced attack detection solution that can actively monitor the in-vehicle network and detect complex cyber-attacks. One of the many approaches to achieve this is by using an intrusion detection system (IDS). Many state-of-the-art IDS employ machine learning algorithms to detect cyber-attacks for its ability to detect both previously observed as well as novel attack patterns. Moreover, the large availability of in-vehicle network data and increasing computational power of the ECUs to handle emerging complex automotive tasks facilitates the use of machine learning models. Therefore, due to its large spectrum of attack coverage and ability to detect complex attack patterns, we adopt and propose two novel machine learning based IDS frameworks (LATTE and TENET) for in-vehicle network anomaly detection. Our proposed LATTE framework uses sequence models, such as LSTMs, in an unsupervised setting to learn the normal system behavior. LATTE leverages the learned information at runtime to detect anomalies by observing for any deviations from the learned normal behavior. Our proposed LATTE framework aims to maximize the anomaly detection accuracy, precision, and recall while minimizing the false-positive rate. The increased complexity of automotive systems has resulted in very long term dependencies between messages which cannot be effectively captured by LSTMs. Hence to overcome this problem, we proposed a novel IDS framework called TENET. TENET employs a novel convolutional neural attention (TCNA) based architecture to effectively learn very-long term dependencies between messages in an in-vehicle network during the training phase and leverage the learned information in combination with a decision tree classifier to detect anomalous messages. Our work aims to efficiently detect a multitude of attacks in the in-vehicle network with low memory and computational overhead on the ECU. | |
dc.format.medium | born digital | |
dc.format.medium | masters theses | |
dc.identifier | Thiruloga_colostate_0053N_17041.pdf | |
dc.identifier.uri | https://hdl.handle.net/10217/235173 | |
dc.language | English | |
dc.language.iso | eng | |
dc.publisher | Colorado State University. Libraries | |
dc.relation.ispartof | 2020- | |
dc.rights | Copyright and other restrictions may apply. User is responsible for compliance with all applicable laws. For information about copyright law, please see https://libguides.colostate.edu/copyright. | |
dc.subject | cyber physical systems | |
dc.subject | sequence modeling | |
dc.subject | deep learning | |
dc.subject | anomaly detection | |
dc.title | Anomaly detection with machine learning for automotive cyber-physical systems | |
dc.type | Text | |
dcterms.rights.dpla | This Item is protected by copyright and/or related rights (https://rightsstatements.org/vocab/InC/1.0/). You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s). | |
thesis.degree.discipline | Electrical and Computer Engineering | |
thesis.degree.grantor | Colorado State University | |
thesis.degree.level | Masters | |
thesis.degree.name | Master of Science (M.S.) |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Thiruloga_colostate_0053N_17041.pdf
- Size:
- 3.77 MB
- Format:
- Adobe Portable Document Format