Repository logo
 

Semi-arid grassland ecosystem functional collapse after effects of five years of extreme drought

dc.contributor.authorLenners, Alicia, author
dc.contributor.authorSmith, Melinda D., advisor
dc.contributor.authorHavrilla, Caroline, committee member
dc.contributor.authorOcheltree, Troy, committee member
dc.date.accessioned2023-08-28T10:27:56Z
dc.date.available2023-08-28T10:27:56Z
dc.date.issued2023
dc.description.abstractA key outcome of climate change is an increase in the frequency and intensity of drought events in many regions of the globe. The largest impacts on ecosystem structure and function are likely to occur in water-limited ecosystems, such as semi-arid grasslands, potentially leading to a collapse of ecosystem function. While short-term studies have been conducted on various grassland ecosystems, the goal of this study is to fill in the gap of the effect multi-year extreme droughts have on the semi-arid shortgrass steppe of the Central US by characterizing the change in structure and function of these ecosystems. The drought was conducted between 2018-2022, and I had conducted various measurements over the summer of 2022 within the USDA-Central Plains Experimental Range (CPER) of Northeastern Colorado. The experimental drought was imposed using four rainfall exclusion shelters, two of which blocked 66% of precipitation from entering, and the other two remaining uncovered (control plots). Ten plots in each of the four shelters were measured weekly for soil moisture (%), soil temperature (°C) and soil respiration (CO2 efflux); twice per season for soil nutrient availability; and at the end of the growing season for aboveground (ANPP; stems and leaves) and belowground net primary production (BNPP; roots). The extreme drought resulted in an ~40% reduction in growing season soil moisture and an average 2°C increase in soil surface temperatures. Within the 13 weeks of study, drought led to an ~50% reduction in soil respiration (CO2 efflux). ANPP was drastically reduced (~99%) with extreme drought, while cactus surface area increased 3-fold. The extreme drought treatment also resulted in large reductions in BNPP measured from 0-30 cm (79%); however, root growth was reduced most in the shallowest soil depth (0-10cm) when compared to control plots. Lastly, there was an increase in nitrogen availability (both NH4+ and NO3-) with extreme drought by the end of the growing season. These results suggest that extreme, multi-year drought can cause an almost complete collapse in ANPP and significantly reduce BNPP particularly in the top 10 cm of the soil profile, which could have important implications for carbon sequestration. It remains unknown what impact the dramatic reduction in ecosystem productivity but accumulation of available nitrogen in the soil will have for recovery of the shortgrass steppe ecosystem post-drought, but it is likely that recovery will be prolonged despite the increase in soil resources.
dc.format.mediumborn digital
dc.format.mediummasters theses
dc.identifierLenners_colostate_0053N_17937.pdf
dc.identifier.urihttps://hdl.handle.net/10217/236843
dc.languageEnglish
dc.language.isoeng
dc.publisherColorado State University. Libraries
dc.relation.ispartof2020-
dc.rightsCopyright and other restrictions may apply. User is responsible for compliance with all applicable laws. For information about copyright law, please see https://libguides.colostate.edu/copyright.
dc.subjectclimate change
dc.subjectecology
dc.subjectsustainability
dc.subjectconservation biology
dc.subjectbotany
dc.subjectland use planning
dc.titleSemi-arid grassland ecosystem functional collapse after effects of five years of extreme drought
dc.typeText
dcterms.rights.dplaThis Item is protected by copyright and/or related rights (https://rightsstatements.org/vocab/InC/1.0/). You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).
thesis.degree.disciplineEcology
thesis.degree.grantorColorado State University
thesis.degree.levelMasters
thesis.degree.nameMaster of Science (M.S.)

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Lenners_colostate_0053N_17937.pdf
Size:
1.16 MB
Format:
Adobe Portable Document Format