Repository logo

Prototyping a geospatial Atlas for wildfire planning and management




Thompson, Matthew P., author
Gannon, Benjamin M., author
Caggiano, Michael D., author
O’Connor, Christopher D., author
Brough, April, author
Gilbertson-Day, Julie W., author
Scott, Joe H., author
Forests, publisher

Journal Title

Journal ISSN

Volume Title


Wildland fire managers are increasingly embracing risk management principles by being more anticipatory, proactive, and “engaging the fire before it starts”. This entails investing in pre-season, cross-boundary, strategic fire response planning with partners and stakeholders to build a shared understanding of wildfire risks and management opportunities. A key innovation in planning is the development of potential operational delineations (PODs), i.e., spatial management units whose boundaries are relevant to fire containment operations (e.g., roads, ridgetops, and fuel transitions), and within which potential fire consequences, suppression opportunities/challenges, and strategic response objectives can be analyzed to inform fire management decision making. As of the summer of 2020, PODs have been developed on more than forty landscapes encompassing National Forest System lands across the western USA, providing utility for planning, communication, mitigation prioritization, and incident response strategy development. Here, we review development of a decision support tool—a POD Atlas—intended to facilitate cross-boundary, collaborative strategic wildfire planning and management by providing high-resolution information on landscape conditions, values at risk, and fire management resource needs for individual PODs. With the atlas, users can rapidly access and assimilate multiple forms of pre-loaded data and analytics in a customizable manner. We prototyped and operationalized this tool in concert with, and for use by, fire managers on several National Forests in the Southern Rocky Mountains of the USA. We present examples, discuss real-world use cases, and highlight opportunities for continued decision support improvement.


Rights Access


risk assessment
decision support
fire behavior


Associated Publications