The effect of projected sea surface temperature change on MJO activity in a warmer climate
dc.contributor.author | Bowden, Amanda Francine Marie, author | |
dc.contributor.author | Maloney, Eric D., advisor | |
dc.contributor.author | Hurrell, Jim, committee member | |
dc.contributor.author | Ross, Matthew, committee member | |
dc.date.accessioned | 2024-01-01T11:23:54Z | |
dc.date.available | 2024-01-01T11:23:54Z | |
dc.date.issued | 2023 | |
dc.description.abstract | The Madden Julian Oscillation (MJO) consists of a convective region that propagates eastward in the tropics on repeat every 30-90 days with peak amplitude during the Boreal Winter (November - March). Since the MJO modulates extreme weather such as tropical cyclones, atmospheric rivers, and monsoon variability, future MJO changes in a warmer climate have implications for prediction of extreme events. Understanding precipitation pattern changes in a changing climate is critical for fresh-water resources and societal planning for oceanic regions. Decadal variability in the climate system causes patterns of sea surface temperature (SST) change in the tropical Pacific and associated precipitation, humidity, and wind pattern changes to vary from one decade to the next. MJO changes are strongly dependent on the pattern of SST change, and so understanding uncertainty in MJO change in future decades in the context of this decadal variability is the primary motivation for this investigation. Since climate models contain climate variability on decadal timescales, different initial conditions across ensemble members can result in diverse projection outcomes in any given decade. This investigation examines the impact of projected SST and moisture pattern changes over the 21st Century on MJO precipitation and zonal wind (850 mb) amplitude changes using 80 members with the SSP370 radiative forcing scenario from the Community Earth System Model 2 (CESM2) Large Ensemble. The projected SST and moisture pattern changes can be weighted more toward the central or eastern equatorial Pacific in earlier parts of the 21st Century across ensemble members, although becomes strongly El Niño-like later in the century. Ensemble members with stronger MJO precipitation amplitude in a given period are characterized by stronger El Niño-like east Pacific warming, associated with a strengthened meridional moisture gradient. As interpreted through moisture mode theory, greater east Pacific warming supports a stronger MJO by enhancing propagation through a stronger meridional moisture gradient, and enhancing MJO amplitude through a stronger vertical moisture gradient. The investigation supports the hypothesis that projected SST and moisture pattern changes influence MJO activity, and also highlights the importance of understanding decadal climate variability for interpreting changes in water resources of oceanic regions. | |
dc.format.medium | born digital | |
dc.format.medium | masters theses | |
dc.identifier | Bowden_colostate_0053N_18055.pdf | |
dc.identifier.uri | https://hdl.handle.net/10217/237341 | |
dc.language | English | |
dc.language.iso | eng | |
dc.publisher | Colorado State University. Libraries | |
dc.relation.ispartof | 2020- | |
dc.rights | Copyright and other restrictions may apply. User is responsible for compliance with all applicable laws. For information about copyright law, please see https://libguides.colostate.edu/copyright. | |
dc.subject | Madden Julian oscillation (MJO) | |
dc.subject | moisture | |
dc.subject | variability | |
dc.subject | model | |
dc.subject | climate change | |
dc.subject | SST | |
dc.title | The effect of projected sea surface temperature change on MJO activity in a warmer climate | |
dc.type | Text | |
dcterms.rights.dpla | This Item is protected by copyright and/or related rights (https://rightsstatements.org/vocab/InC/1.0/). You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s). | |
thesis.degree.discipline | Atmospheric Science | |
thesis.degree.grantor | Colorado State University | |
thesis.degree.level | Masters | |
thesis.degree.name | Master of Science (M.S.) |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Bowden_colostate_0053N_18055.pdf
- Size:
- 11.37 MB
- Format:
- Adobe Portable Document Format