Repository logo

Economic impacts and analysis methods of extreme precipitation estimates for eastern Colorado




Changnon, David, author
McKee, Thomas B., author
Cooperative Institute for Research in the Atmosphere, Colorado State University, publisher

Journal Title

Journal ISSN

Volume Title


Dams are designed to store water and to ensure human safety and as such they must withstand, in their lifetimes, any extreme precipitation event in their drainage basin. Correct estimation of this event is critical because on one hand it must provide an adequate level of safety to not occur, but it must not be any greater than needed since the high costs of dam construction and modifications are directly related to the magnitude of the estimated extreme event. Most frequently the extreme precipitation event is labeled as the Probable Maximum Precipitation, or PMP. National and state concerns over the adequacy of existing dams in the United States as well as increased development of the Front Range led to state dam risk reclassification and federal redefinition of new PMP values issued for Colorado in 1984. The study area included the region from the Continental Divide to the 103rd Meridian. Study of the implementation of PMP values and their potential economic impacts in Colorado reveals that an enormous cost will result in Colorado. Techniques for estimating cost of modifications for spillways were developed. Among 162 high risk dams, the estimated total cost for modification was approximately $184 million. The economic value of this precipitation estimate is $9.45 million per inch change of rainfall in this limited study area. In one elevation region, 7000 to 9000 feet, the costs is approximately $15.76 million per inch change of rainfall. Regional cost analyses revealed the South Platte River Division had the greatest costs. Inherent limitations in the PMP procedure and the cost of spillway modifications have made evaluating other alternatives necessary. Special aspects of estimates for extreme precipitation, such as snowmelt runoff versus extreme precipitation events and climate variations were examined. Four methods for estimating extreme precipitation events were evaluated; the traditional PMP, the paleogeological, the cloud/mesoscale dynamic model, and the statistical approaches. A collection of approaches were recommended for Colorado dam design in three elevation regions: the plains, the foothills, and the mountains.


August 1986.
Includes bibliographical references (pages 56-59).

Rights Access


Dams -- Colorado -- Design and construction
Probable maximum precipitation (Hydrometeorology) -- Colorado


Associated Publications