Perception systems for robust autonomous navigation in natural environments
Date
2022
Authors
Trabelsi, Ameni, author
Beveridge, Ross J., advisor
Blanchard, Nathaniel, committee member
Anderson, Chuck, committee member
King, Emily, committee member
Journal Title
Journal ISSN
Volume Title
Abstract
As assistive robotics continues to develop thanks to the rapid advances of artificial intelligence, smart sensors, Internet of Things, and robotics, the industry began introducing robots to perform various functions that make humans' lives more comfortable and enjoyable. While the principal purpose of deploying robots has been productivity enhancement, their usability has widely expanded. Examples include assisting people with disabilities (e.g., Toyota's Human Support Robot), providing driver-less transportation (e.g., Waymo's driver-less cars), and helping with tedious house chores (e.g., iRobot). The challenge in these applications is that the robots have to function appropriately under continuously changing environments, harsh real-world conditions, deal with significant amounts of noise and uncertainty, and operate autonomously without the intervention or supervision of an expert. To meet these challenges, a robust perception system is vital. This dissertation casts light on the perception component of autonomous mobile robots and highlights their major capabilities, and analyzes the factors that affect their performance. In short, the developed approaches in this dissertation cover the following four topics: (1) learning the detection and identification of objects in the environment in which the robot is operating, (2) estimating the 6D pose of objects of interest to the robot, (3) studying the importance of the tracking information in the motion prediction module, and (4) analyzing the performance of three motion prediction methods, comparing their performances, and highlighting their strengths and weaknesses. All techniques developed in this dissertation have been implemented and evaluated on popular public benchmarks. Extensive experiments have been conducted to analyze and validate the properties of the developed methods and demonstrate this dissertation's conclusions on the robustness, performance, and utility of the proposed approaches for intelligent mobile robots.
Description
Rights Access
Subject
computer vision
perception systems
machine learning
autonomous navigation systems