Repository logo
 

Quantitative analysis of runoff in green roof structures in the Colorado Front Range

dc.contributor.authorSalerno, Amanda, author
dc.contributor.authorBousselot, Jennifer, advisor
dc.contributor.authorChoi, Jane, committee member
dc.contributor.authorSharvelle, Sybil, committee member
dc.date.accessioned2023-08-28T10:27:54Z
dc.date.available2023-08-28T10:27:54Z
dc.date.issued2023
dc.description.abstractThe green roof capacity of retaining rainwater extends the runoff duration further than the actual rain event, releasing part of it slowly into the drainage system and positively impacting it. However, the volumes will depend on the size of the rainfall event and the green roof design. Therefore, specific attention should be paid when designing a new green roof project, like geographic locations, materials peculiarities, and the project's needs, including biotic and abiotic design components. The need for more local data regarding this analysis in Western North America is still significant. Therefore, this study aims to analyze the impact of three different green roof systems on Colorado's climate by reduction of runoff, retention volume, and runoff coefficient. Moreover, we aim to analyze plant health and substrate moisture retention and components for better water capture. To achieve the goals outlined, three different green roofs technologies, with different retention and detention layers technologies, and a control roof, a conventional low slope roof for comparison, are placed at Colorado State University in Fort Collins, Colorado, United States; the systems include a Sempergreen Purple Roof, a Sempergreen Sponge Roof, and a Green Roof Technology with an Extenduct Drainage System; all were vegetated with Sedum mats, base slopes of 1% toward the rooftop drain, and measuring 1m x 2m. The drainage systems in each green roof were designed to test performance under steady, low-intensity, high-intensity, short-duration, and long-duration rainfall conditions and simulated rain events. All the systems have the same drain system connected to a v-notch weir. Volume, speed, and time were measured to quantify the runoff from all roof systems. Our data suggests that green roof volume capture varies with preexisting substrate moisture conditions, frequency and size of storms, and drainage layer components. Green Roof Technology with an Extenduct Drainage System and Sponge Roof had the best volume retention in less intense, more frequent, and back-to-back rainfall events. On the other hand, Purple Roof performed better for larger rain events that might lead to flooding and urban drainage concerns in cities. Ultimately, the Colorado-specific data from this study will enable the intentional design of green roofs to optimize plant health and water management.
dc.format.mediumborn digital
dc.format.mediummasters theses
dc.identifierGuedesSalerno_colostate_0053N_17910.pdf
dc.identifier.urihttps://hdl.handle.net/10217/236829
dc.languageEnglish
dc.language.isoeng
dc.publisherColorado State University. Libraries
dc.relation.ispartof2020-
dc.rightsCopyright and other restrictions may apply. User is responsible for compliance with all applicable laws. For information about copyright law, please see https://libguides.colostate.edu/copyright.
dc.titleQuantitative analysis of runoff in green roof structures in the Colorado Front Range
dc.typeText
dcterms.rights.dplaThis Item is protected by copyright and/or related rights (https://rightsstatements.org/vocab/InC/1.0/). You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).
thesis.degree.disciplineHorticulture & Landscape Architecture
thesis.degree.grantorColorado State University
thesis.degree.levelMasters
thesis.degree.nameMaster of Science (M.S.)

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
GuedesSalerno_colostate_0053N_17910.pdf
Size:
37.79 MB
Format:
Adobe Portable Document Format