Repository logo
 

Cold summer stream temperatures reduce recruitment of native cutthroat trout populations

dc.contributor.authorColeman, Mark Anthony, author
dc.contributor.authorFausch, Kurt D., advisor
dc.date.accessioned2024-03-13T19:26:09Z
dc.date.available2024-03-13T19:26:09Z
dc.date.issued2007
dc.description.abstractTranslocation is a key strategy for conserving subspecies of native cutthroat trout Oncorhynchus clarkii, which have declined markedly throughout their native ranges in North America. Previous research showed that translocation success in high-elevation southern Rocky Mountain streams was more likely in warmer streams, and suggested that cold temperatures could limit juvenile trout recruitment and explain translocation failures. However, the effects of cold temperature on recruitment had not been previously investigated. I studied these effects using an integrated laboratory and field approach. In the lab, age-0 Colorado River cutthroat trout O. c. pleuriticus were subjected to one of three natural temperature regimes during two years, which averaged 7°C, 8.5°C and 10.0°C during the warmest summer month. From hatching to swimup, mean survival was high during both years, ranging from 97% (warm regime) to 85% (cold). After swimup, warm regime fry had much greater survival and grew more than 60% larger, on average, than cold regime fry by the onset of winter in the 2003 experiment. The pattern of lower survival in colder temperature regimes held through mid-winter, with 76% survival (warm regime), 62% (intermediate), and 29% (cold). Likewise, during the 2004 experiment, survival to early winter ranged from 44% (warm regime) to 10% (cold). Most mortality in all treatments occurred during a recruitment bottleneck encompassing a 4- to 6-week period following swimup. A response surface analysis of percent dry weight data indicated that the energy content of fry at swimup was lower in colder regimes, and declined during the recruitment bottleneck in all regimes. In the field, I monitored temperatures and conducted surveys to estimate densities of age-0 fry at peak emergence in six headwater streams that varied in thermal characteristics. Density and growth increased with Celsius degree days during the growing season. My results indicate a strong recruitment bottleneck after swimup, when temperature-related energy deficits probably cause significant mortality. Fisheries managers in the southern Rocky Mountains may increase translocation success of native cutthroat trout by selecting sites with ≥800-900 degree days during the growing season, and fry grow to ≥30-35 mm by the end of the growing season.
dc.format.mediumborn digital
dc.format.mediumdoctoral dissertations
dc.identifierETDF_Coleman_2007_3266407.pdf
dc.identifier.urihttps://hdl.handle.net/10217/237658
dc.languageEnglish
dc.language.isoeng
dc.publisherColorado State University. Libraries
dc.relation.ispartof2000-2019
dc.rightsCopyright and other restrictions may apply. User is responsible for compliance with all applicable laws. For information about copyright law, please see https://libguides.colostate.edu/copyright.
dc.rights.licensePer the terms of a contractual agreement, all use of this item is limited to the non-commercial use of Colorado State University and its authorized users.
dc.subjectcutthroat trout
dc.subjectOncorhynchus clarkii
dc.subjectrecruitment
dc.subjectecology
dc.subjectaquaculture
dc.subjectfish production
dc.subjectaquatic sciences
dc.titleCold summer stream temperatures reduce recruitment of native cutthroat trout populations
dc.typeText
dcterms.rights.dplaThis Item is protected by copyright and/or related rights (https://rightsstatements.org/vocab/InC/1.0/). You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).
thesis.degree.disciplineFish, Wildlife, and Conservation Biology
thesis.degree.grantorColorado State University
thesis.degree.levelDoctoral
thesis.degree.nameDoctor of Philosophy (Ph.D.)

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ETDF_Coleman_2007_3266407.pdf
Size:
2.97 MB
Format:
Adobe Portable Document Format