Repository logo
 

Development of a novel additive manufacturing method: process generation and evaluation of 3D printed parts made with alumina nanopowder

Date

2017

Authors

Hensen, Tucker Joseph, author
Williams, John D., advisor
Prawel, David A., advisor
Wang, Qiang, committee member

Journal Title

Journal ISSN

Volume Title

Abstract

Direct coagulation printing (DCP) is a new approach to extrusion-based additive manufacturing, developed during this thesis project using alumina nanopowder. The fabrication of complex ceramic parts, sintered to full density, was achieved and the details of this invention are described. With the use of additive manufacturing, complex features can be generated that are either very difficult or unattainable by conventional subtractive manufacturing methods. Three unique approaches were taken to create a slurry suitable for extrusion 3D-printing. Each represented a different method of suspending alumina nanopowder in a liquid; a bio-polymer gel based on chitosan, a synthetic polymer binder using poly-vinyl acetate (PVA), and electrostatic stabilization with the dispersant tri-ammonium citrate (TAC). It was found that TAC created a slurry with viscosity and coagulation rate that were tuneable through pH adjustment with nitric acid. This approach led to the most promising printing and sintering results, and is the basis of DCP. Taguchi and fractional factorial design of experiments models were used to optimize mixing of the alumina slurry, rheological properties, print quality, and sinterability. DCP was characterized by measuring the mechanical properties and physical characteristics of printed parts. Features as small as ~450 μm in width were produced, in parts with overhangs and enclosed volumes, in both linear and radial geometries. After sintering, these parts exhibited little to no porosity, with flexural modulus and hardness comparing favorably with conventionally manufactured alumina parts. A remarkable aspect of DCP is that it is a completely binderless process, requiring no binder removal step. In addition, DCP can employ nanopowders, allowing for enhanced mechanical properties as observed in nano-grained materials. Perhaps most importantly, any material that acquires a surface charge when in aqueous media has the potential to be used in DCP, making it a method of additive manufacturing using many metals and ceramics other than alumina.

Description

Rights Access

Subject

binderless
direct coagulation
nano
ceramic
additive manufacturing
extrusion

Citation

Associated Publications