Repository logo
 

Experimental assessment of cracked steel beams under mechanical loading and elevated temperatures

dc.contributor.authorAhmadi, Bashir, author
dc.contributor.authorMahmoud, Hussam, advisor
dc.contributor.authorvan de Lindt, John, committee member
dc.contributor.authorStrong, Kelly, committee member
dc.date.accessioned2017-01-04T22:59:21Z
dc.date.available2017-01-04T22:59:21Z
dc.date.issued2016
dc.description.abstractBridge fire is a major engineering problem that has been gaining attention by researchers and engineers. As reported in the New York Department of Transportation database, there has been approximately 50 cases of bridge collapse due to fire nationwide with many more cases where fires resulted in repairable damage. The fires are typically due to vehicle crash, arson, and in some cases wildfires. The affected bridges are mostly fabricated from steel, concrete, and temper. The problem of bridge fire is further aggravated by the presence of fatigue cracks in steel bridges. Various experimental and numerical studies have been conducted to evaluate the response of steel beams under elevated temperature. However, to date, there is lack of information on the response of steel beams with pre-existing cracks under elevated temperature. The importance of evaluating cracked steel beams under elevated temperature stems from the fact that many steel bridges that are currently in service suffer from major deteriorations manifested in the presence of fatigue cracks that are the result of cyclic loading from daily traffic. With no available data on failure behavior of cracked steel beams under fire, this thesis introduces a new testing protocol for evaluating the response of cracked steel beams under elevated temperature. Specifically, the results of experimental tests, conducted at the structural engineering laboratory at Colorado State University, of four initially cracked W8x24 steel beams under point loading and non-uniform elevated temperature are presented. The cracks are introduced across the bottom flange and the beams are loaded to failure while being subjected to various non-uniform elevated temperature distributions varying from 200 °C to 600 °C. The competition between two different failure modes: excessive deflection and fracture along the crack plane, is evaluated with respect to temperature distributions in the beams. In cases where fracture prevailed, different types of fractures were observed including brittle fracture, ductile fracture, and brittle/ductile transition failure, which depended on the temperature distribution. The results presented include load versus displacement and time versus temperature curves. In addition, digital image correlation method was utilized to develop strain and displacement fields around the cracked regions. This experimental study provides an alternative method for evaluating cracked beams under elevated temperature and will provide engineers with insight into various behavioral aspects of steel beams under the investigated loading demands. Furthermore, the results of this study can be used to calibrate advanced numerical finite element models, capable of capturing large deformations and fracture, which can in turn be used to conduct a parametric study for various sizes of bridge girders under an ensemble of thermal loading scenarios.
dc.format.mediumborn digital
dc.format.mediummasters theses
dc.identifierAhmadi_colostate_0053N_13978.pdf
dc.identifier.urihttp://hdl.handle.net/10217/178934
dc.languageEnglish
dc.language.isoeng
dc.publisherColorado State University. Libraries
dc.relation.ispartof2000-2019
dc.rightsCopyright and other restrictions may apply. User is responsible for compliance with all applicable laws. For information about copyright law, please see https://libguides.colostate.edu/copyright.
dc.subjectcracked steel beam
dc.subjectsteel beam under fire
dc.subjectsteel at elevated temperature
dc.subjectbridge fire
dc.titleExperimental assessment of cracked steel beams under mechanical loading and elevated temperatures
dc.typeText
dcterms.rights.dplaThis Item is protected by copyright and/or related rights (https://rightsstatements.org/vocab/InC/1.0/). You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).
thesis.degree.disciplineCivil and Environmental Engineering
thesis.degree.grantorColorado State University
thesis.degree.levelMasters
thesis.degree.nameMaster of Science (M.S.)

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Ahmadi_colostate_0053N_13978.pdf
Size:
6.67 MB
Format:
Adobe Portable Document Format