Repository logo
 

Analysis and characterization of wireless smart power meter

dc.contributor.authorSoman, Sachin, author
dc.contributor.authorYoung, Peter, advisor
dc.contributor.authorZimmerle, Daniel, committee member
dc.contributor.authorPasricha, Sudeep, committee member
dc.date.accessioned2007-01-03T06:51:14Z
dc.date.available2007-01-03T06:51:14Z
dc.date.issued2014
dc.descriptionNo supplementary documents submitted.
dc.description.abstractRecent increases in the demand for and price of electricity has stimulated interest in monitoring energy usage and improving efficiency. This research work supports development of a low-cost wireless smart power meter capable of measuring RMS Values of voltage and current, real power, and reactive power. The proposed smart power meter features include matching by-device rate of consumption and usage patterns to assist users in monitoring the connected devices. The meter also includes condition monitoring to detect harmonics of interest in the connected circuits which can give vital clues about the defects in machines connected to the circuits. This research work focuses on estimating communicational and computational requirements of the smart power meter and optimization of the system based on the estimated communication and computational requirements. The wireless communication capabilities investigated here are limited to existing wireless technologies in the environment where the power meters will be deployed. Field tests are performed to measure the performance of selected wireless standard in the deployment environment. The test results are used to understand the distance over which the smart power meters can communicate and where it is necessary to utilize repeaters or range extenders to reduce the data loss. Computational requirements included analysis of smart meter front-end sampling of analog data from both current and voltage sensors. Digitized samples stored in a buffer which is further processed by a microcontroller for all the desired results from the power meter. The various stages for processing the data require computational bandwidth and memory dependent on the size of the data stream and calculations involved in the particular stage. A Simulink-based system model of the power meter was developed to report a statistic of computational bandwidth demanded by each stage of data processing. The developed smart meter works in an environment with other wireless devices which include Wi-Fi and Bluetooth. The data loss caused when the smart power meter transmits the data depends on the architecture of the wireless network and also pre-existing wireless technology working in the same environment and while operating in the same frequency band. The best approach in developing a wireless network should reduce the hardware cost of the network and to reduce the data loss in the wireless network. A wireless sensor network is simulated in OMNET++ platform to measure the performance of wireless standard used in smart power meters. Scenarios involving the number of routers in the network and varying throughput between devices are considered to measure the performance of wireless power meters. Supplementary documents provided with the electronic version of this thesis contain program codes which were developed in Simulink and OMNET++.
dc.format.mediumborn digital
dc.format.mediummasters theses
dc.identifierSoman_colostate_0053N_12419.pdf
dc.identifier.urihttp://hdl.handle.net/10217/84583
dc.languageEnglish
dc.language.isoeng
dc.publisherColorado State University. Libraries
dc.relation.ispartof2000-2019
dc.rightsCopyright and other restrictions may apply. User is responsible for compliance with all applicable laws. For information about copyright law, please see https://libguides.colostate.edu/copyright.
dc.subjectcondition monitoring
dc.subjectwireless power meter
dc.subjectsmart power meter
dc.subjectpower meter
dc.subjectlow cost power meter
dc.titleAnalysis and characterization of wireless smart power meter
dc.typeText
dcterms.rights.dplaThis Item is protected by copyright and/or related rights (https://rightsstatements.org/vocab/InC/1.0/). You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).
thesis.degree.disciplineElectrical and Computer Engineering
thesis.degree.grantorColorado State University
thesis.degree.levelMasters
thesis.degree.nameMaster of Science (M.S.)

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Soman_colostate_0053N_12419.pdf
Size:
2 MB
Format:
Adobe Portable Document Format
Description: