Repository logo
 

An analysis of combinatorial search spaces for a class of NP-hard problems

Date

2011

Authors

Sutton, Andrew M., author
Whitley, L. Darrell, advisor
Howe, Adele E., advisor
Chong, Edwin K. P., committee member
Bohm, A. P. Willem, committee member

Journal Title

Journal ISSN

Volume Title

Abstract

Given a finite but very large set of states X and a real-valued objective function ƒ defined on X, combinatorial optimization refers to the problem of finding elements of X that maximize (or minimize) ƒ. Many combinatorial search algorithms employ some perturbation operator to hill-climb in the search space. Such perturbative local search algorithms are state of the art for many classes of NP-hard combinatorial optimization problems such as maximum k-satisfiability, scheduling, and problems of graph theory. In this thesis we analyze combinatorial search spaces by expanding the objective function into a (sparse) series of basis functions. While most analyses of the distribution of function values in the search space must rely on empirical sampling, the basis function expansion allows us to directly study the distribution of function values across regions of states for combinatorial problems without the need for sampling. We concentrate on objective functions that can be expressed as bounded pseudo-Boolean functions which are NP-hard to solve in general. We use the basis expansion to construct a polynomial-time algorithm for exactly computing constant-degree moments of the objective function ƒ over arbitrarily large regions of the search space. On functions with restricted codomains, these moments are related to the true distribution by a system of linear equations. Given low moments supplied by our algorithm, we construct bounds of the true distribution of ƒ over regions of the space using a linear programming approach. A straightforward relaxation allows us to efficiently approximate the distribution and hence quickly estimate the count of states in a given region that have certain values under the objective function. The analysis is also useful for characterizing properties of specific combinatorial problems. For instance, by connecting search space analysis to the theory of inapproximability, we prove that the bound specified by Grover's maximum principle for the Max-Ek-Lin-2 problem is sharp. Moreover, we use the framework to prove certain configurations are forbidden in regions of the Max-3-Sat search space, supplying the first theoretical confirmation of empirical results by others. Finally, we show that theoretical results can be used to drive the design of algorithms in a principled manner by using the search space analysis developed in this thesis in algorithmic applications. First, information obtained from our moment retrieving algorithm can be used to direct a hill-climbing search across plateaus in the Max-k-Sat search space. Second, the analysis can be used to control the mutation rate on a (1+1) evolutionary algorithm on bounded pseudo-Boolean functions so that the offspring of each search point is maximized in expectation. For these applications, knowledge of the search space structure supplied by the analysis translates to significant gains in the performance of search.

Description

Rights Access

Subject

combinatorial optimization
combinatorial search
local search
pseudo-Boolean functions
search space analysis

Citation

Associated Publications