COVID-19 misinformation on Twitter: the role of deceptive support
Date
2022
Authors
Hashemi Chaleshtori, Fateme, author
Ray, Indrakshi, advisor
Anderson, Charles W., committee member
Malaiya, Yashwant K., committee member
Adams, Henry, committee member
Journal Title
Journal ISSN
Volume Title
Abstract
Social media platforms like Twitter are a major dissemination point for information and the COVID-19 pandemic is no exception. But not all of the information comes from reliable sources, which raises doubts about their validity. In social media posts, writers reference news articles to gain credibility by leveraging the trust readers have in reputable news outlets. However, there is not always a positive correlation between the cited article and the social media posting. Targeting the Twitter platform, this study presents a novel pipeline to determine whether a Tweet is indeed supported by the news article it refers to. The approach follows two general objectives: to develop a model capable of detecting Tweets containing claims that are worthy of fact-checking and then, to assess whether the claims made in a given Tweet are supported by the news article it cites. In the event that a Tweet is found to be trustworthy, we extract its claim via a sequence labeling approach. In doing so, we seek to reduce the noise and highlight the informative parts of a Tweet. Instead of detecting erroneous and invalid information by analyzing the propagation patterns or ensuing examination of Tweets against already proven statements, this study aims to identify reliable support (or lack thereof) before misinformation spreads. Our research reveals that 14.5% of the Tweets are not factual and therefore not worth checking. An effective filter like this is especially useful when looking at a platform such as Twitter, where hundreds of thousands of posts are created every day. Further, our analysis indicates that among the Tweets which refer to a news article as evidence of a factual claim, at least 1% of those Tweets are not substantiated by the article, and therefore mislead the reader.
Description
Rights Access
Subject
natural language processing
fake news
social computing