Repository logo
 

Evolution at the edge: how hibernation, heat waves, and hybridization impact a range expansion

Abstract

Evolutionary processes shape the diversity of life on earth. Over millennia, species diverge from one another, radiating out into the tree of life. The same processes of evolution are also acting in much shorter periods of time, selecting for traits, mixing genes across populations, and generating new mutations each generation. These rapid evolutionary processes interact with ecological processes, which are happening on similar time scales. Range expansions, or expansions of a population's geographic distribution, were once considered strictly ecological processes of populations interacting with other populations and the environment, unaffected by evolution. However, modern theory understands range expansions to be crucibles of rapid evolution. Rapid evolution shapes the process of range expansion itself, and is also integral to determining the outcomes of range expansion. During range expansions, ecological and evolutionary processes intertwine, combining to shape the dynamics of a range expansion, like where a population can establish, and how quickly the expansion moves. The study of evolution during range expansions has only just begun to make it out of the theory to be tested in wild populations in nature, so we don't yet know how common evolution during range expansion is, or how large its effects might be. Here, I explore how evolution impacts range expansions that are current and ongoing in natural systems in the wild. I focus on the tamarisk beetle (Diorhabda spp.), deliberately introduced in the United States about two decades ago for biological control of a widespread invasive weed. Through its role as a biological control agent, the tamarisk beetle has expanded its range hundreds of kilometers along rivers, colonizing new areas of the invasive weed in environments very different from its original release habitat. The range expansion of the tamarisk beetle provides a unique opportunity to study evolution during an ongoing natural range expansion across an environmental gradient. Through the following four chapters, I document evolution of dispersal ability and life history traits (Chapter 1), evolution of seasonal dormancy and genetic variation of that trait (Chapter 2), evolution of phenotypic plasticity (Chapter 3), and the impacts of hybridization (Chapter 4). Throughout, I discuss the implications for biological control and the tamarisk beetle specifically, and more generally how these results improve our understanding of how evolution is caused by, enables, and alters natural range expansions over short time periods, even in natural range expansions.

Description

Rights Access

Subject

dispersal
invasive species
range expansion
eco-evolutionary dynamics
biological control
phenology

Citation

Associated Publications