Repository logo
 

Orthogonal pair-directed codon reassignment as a tool for evaluating the factors affecting translation in E. coli

dc.contributor.authorSchwark, David, author
dc.contributor.authorFisk, John, advisor
dc.contributor.authorAckerson, Chris, committee member
dc.contributor.authorKennan, Alan, committee member
dc.contributor.authorPeebles, Christie, committee member
dc.contributor.authorSnow, Chris, committee member
dc.date.accessioned2018-06-12T16:14:06Z
dc.date.available2020-06-07T16:14:06Z
dc.date.issued2018
dc.description.abstractProteins are polymers of amino acids that are essential for life, central to cellular function, and have applications in fields ranging from materials science to biomedicine. Proteins in nature are composed of 20 amino acids with limited variability in size and chemical properties. Expanding the genetic code to contain non-canonical amino acids (ncAAs) that contain functionalities not contained in nature is a powerful strategy for probing and extending the properties of proteins. Current in vivo systems for expanding the genetic code have focused on using an engineered orthogonal aminoacyl-tRNA and aminoacyl tRNA-synthetase pairs (tRNA/aaRS) to direct incorporation of ncAAs at amber stop codons. In order to further expand the genetic code to 22 or more amino acids, additional codons must be targeted for reassignment to ncAAs. The genetic code is degenerate; 18 of the 20 canonical amino acids are encoded by more than one codon. Breaking the degeneracy of the genetic code by orthogonal pair directed sense codon reassignment is one pathway to genetic codes of 22 or more amino acids. However, orthogonal pair directed sense codon reassignment is hampered by a limited understanding of the relative importance of the factors that affect the translation of proteins. Here, we describe the repurposing of two commonly used orthogonal pairs from Methanocaldococcus jannaschii (M. jannaschiiI) and Methanosarcina barkeri (M. barkeri) to measure the in vivo reassignment efficiency of 30 different sense codons to tyrosine in E. coli with a simple fluorescence-based screen. The suite of sense codon reassignment efficiencies identified multiple promising codons for reassignment to ncAAs that have not been previously identified. Importantly, every sense codon was partially reassigned to tyrosine when either orthogonal tRNA/aaRS pair was used. Sense codons reassigned to tyrosine with high efficiency may be used directly for reassignment to ncAAs, and any sense codon with measurable reassignment to tyrosine may be improved through directed evolution. The sets of in vivo sense codon reassignment also revealed that E. coli are broadly tolerable to a large number of amino acid substitutions to tyrosine throughout the proteome. The codon reassignment efficiency measurements also enabled an analysis of the in vivo importance of local codon context effects, tRNA abundance, aminoacylation level, tRNA modifications, and codon-anticodon binding energy in determining translational fidelity. Quantitative sense codon reassignment efficiency measurements showed that the process of translation is highly balanced and both tRNA abundance and aminoacylation efficiency do not appear to be dominant factors in determining translational fidelity. Furthermore, quantitative measurements of amber stop codon reassignment efficiencies to tyrosine with the orthogonal M. jannaschii pair revealed that local codon context is an important factor for orthogonal pair directed amber stop codon reassignment.
dc.format.mediumborn digital
dc.format.mediumdoctoral dissertations
dc.identifierSchwark_colostate_0053A_14736.pdf
dc.identifier.urihttps://hdl.handle.net/10217/189355
dc.languageEnglish
dc.language.isoeng
dc.publisherColorado State University. Libraries
dc.relation.ispartof2000-2019
dc.rightsCopyright and other restrictions may apply. User is responsible for compliance with all applicable laws. For information about copyright law, please see https://libguides.colostate.edu/copyright.
dc.titleOrthogonal pair-directed codon reassignment as a tool for evaluating the factors affecting translation in E. coli
dc.typeText
dcterms.embargo.expires2020-06-07
dcterms.embargo.terms2020-06-07
dcterms.rights.dplaThis Item is protected by copyright and/or related rights (https://rightsstatements.org/vocab/InC/1.0/). You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).
thesis.degree.disciplineBioengineering
thesis.degree.grantorColorado State University
thesis.degree.levelDoctoral
thesis.degree.nameDoctor of Philosophy (Ph.D.)

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Schwark_colostate_0053A_14736.pdf
Size:
3.9 MB
Format:
Adobe Portable Document Format
Description: