Show simple item record

dc.contributor.advisorKipper, Matt
dc.contributor.authorNijjar, Rajvir Singh
dc.contributor.committeememberBailey, Travis
dc.contributor.committeememberReynolds, Melissa
dc.date.accessioned2007-01-03T05:55:50Z
dc.date.available2007-01-03T05:55:50Z
dc.date.issued2013
dc.description2013 Summer.
dc.descriptionIncludes bibliographical references.
dc.description.abstractWith increasing applications of biomedical implants, it is crucial to develop surfaces that are blood compatible, meaning they do not induce platelet or protein adhesion. Many implants that are currently used to treat a wide range of problems have one major drawback, they can induce thrombosis. The endothelial glycocalyx plays a crucial role in preventing thrombosis. Based on this idea, we set out to develop a surface that has a brush-like structure similar to that of the endothelial glycocalyx. We developed the surface by adsorbing negatively charged heparin/chitosan polyelectrolyte complex nanoparticles onto a heparin/tri-methylchitosan polyelectrolyte multilayer. The surface was then characterized using surface plasmon resonance (SPR), quartz crystal microbalance (QCM), atomic force microsocopy (AFM), scanning electron microscope (SEM), and polarization modulation-infrared reflection absorption spectroscopy (PM-IRRAS). Using these techniques we confirmed that we had created a surface with brush- like structure. Our hypothesis that the nanoparticles on the surface swell and form a brush-like structure when exposed to physiological conditions seems to be correct, as a result, we feel the surface we have developed could have a wide range of applications in the biomedical field.
dc.format.mediumborn digital
dc.format.mediummasters theses
dc.identifierNijjar_colostate_0053N_11915.pdf
dc.identifier.urihttp://hdl.handle.net/10217/80280
dc.languageEnglish
dc.publisherColorado State University. Libraries
dc.relation.ispartof2000-2019 - CSU Theses and Dissertations
dc.rightsCopyright of the original work is retained by the author.
dc.titleBrush-like surface using heparin/chitosan based nanoparticles for blood-contacting applications
dc.typeText
dcterms.rights.dplaThe copyright and related rights status of this item has not been evaluated (https://rightsstatements.org/vocab/CNE/1.0/). Please refer to the organization that has made the Item available for more information.
thesis.degree.disciplineChemical and Biological Engineering
thesis.degree.grantorColorado State University
thesis.degree.levelMasters
thesis.degree.nameMaster of Science (M.S.)


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record