Repository logo
 

Physiological and biochemical mechanisms behind the fast action of glufosinate

Date

2019

Authors

Kagueyama Takano, Hudson, author
Dayan, Franck E., advisor
Westra, Philip, advisor
Reddy, Anireddy, committee member
Preston, Christopher, committee member
Gaines, Todd, committee member

Journal Title

Journal ISSN

Volume Title

Abstract

Glufosinate is one of the few herbicides that are still effective for controlling herbicide resistant weeds, but its performance is often inconsistent and affected by environmental conditions. It inhibits glutamine synthetase (GS) by competing with glutamate for the active binding site. Unlike other amino acid biosynthesis inhibitors, glufosinate is a fast-acting herbicide and susceptible plants develop visual symptoms within a few hours after treatment. Inhibition of GS leads to ammonia accumulation and photosynthesis inhibition, which have traditionally been proposed as the causes of the rapid phytotoxicity. This dissertation presents a new understanding of the mechanism(s) of action of glufosinate and a biochemical approach to improve its herbicidal efficacy. Glufosinate uptake is inhibited by glutamine levels in the plant, and translocation is not affected by the rapid phytotoxicity. Glufosinate translocates primarily through the apoplast (xylem) rather than the symplast (phloem) probably due to its physicochemical properties and the absence of an effective membrane transporter. Glufosinate efficacy is proportional to the herbicide concentration in leaf tissues. Neither ammonia accumulation nor carbon assimilation inhibition are directly associated with the fast action of glufosinate. Instead, rapid phytotoxicity results from a massive light-dependent accumulation of reactive oxygen species (ROS). Inhibition of GS blocks the photorespiration pathway leading to a massive photooxidation damage. Under full sunlight, the excess of electrons is accepted by molecular oxygen leading to ROS generation. These free radicals cause lipid peroxidation, which ultimately leads to rapid cell death. The addition of protoporphyrinogen oxidase (PPO) inhibitors to glufosinate enhances ROS accumulation and herbicidal activity. This enhanced activity results from protoporphyrin formation at high levels due to a transient accumulation of glutamate, the precursor for chlorophyll biosynthesis. The herbicide combination also showed enhanced activity in the field and may help to overcome the lack of glufosinate efficacy under certain environmental conditions.

Description

Rights Access

Subject

herbicides
mode of action
reactive oxygen species
metabolomics
glutamine synthetase
phosphinothricin

Citation

Associated Publications