Genome-scale metabolic modeling of cyanbacteria: network structure, interactions, reconstruction and dynamics

Joshi, Chintan Jagdishchandra, author
Prasad, Ashok, advisor
Peebles, Christie A. M., committee member
Reardon, Kenneth, committee member
Peers, Graham, committee member
Journal Title
Journal ISSN
Volume Title
Metabolic network modeling, a field of systems biology and bioengineering, enhances the quantitative predictive understanding of cellular metabolism and thereby assists in the development of model-guided metabolic engineering strategies. Metabolic models use genome-scale network reconstructions, and combine it with mathematical methods for quantitative prediction. Metabolic system reconstructions, contain information on genes, enzymes, reactions, and metabolites, and are converted into two types of networks: (i) gene-enzyme-reaction, and (ii) reaction-metabolite. The former details the links between the genes that are known to code for metabolic enzymes, and the reaction pathways that the enzymes participate in. The latter details the chemical transformation of metabolites, step by step, into biomass and energy. The latter network is transformed into a system of equations and simulated using different methods. Prominent among these are constraint-based methods, especially Flux Balance Analysis, which utilizes linear programming tools to predict intracellular fluxes of single cells. Over the past 25 years, metabolic network modeling has had a range of applications in the fields of model-driven discovery, prediction of cellular phenotypes, analysis of biological network properties, multi-species interactions, engineering of microbes for product synthesis, and studying evolutionary processes. This thesis is concerned with the development and application of metabolic network modeling to cyanobacteria as well as E. coli. Chapter 1 is a brief survey of the past, present, and future of constraint-based modeling using flux balance analysis in systems biology. It includes discussion of (i) formulation, (ii) assumption, (iii) variety, (iv) availability, and (v) future directions in the field of constraint based modeling. Chapter 2, explores the enzyme-reaction networks of metabolic reconstructions belonging to various organisms; and finds that the distribution of the number of reactions an enzyme participates in, i.e. the enzyme-reaction distribution, is surprisingly similar. The role of this distribution in the robustness of the organism is also explored. Chapter 3, applies flux balance analysis on models of E. coli, Synechocystis sp. PCC6803, and C. reinhardtii to understand epistatic interactions between metabolic genes and pathways. We show that epistatic interactions are dependent on the environmental conditions, i.e. carbon source, carbon/oxygen ratio in E. coli, and light intensity in Synechocystis sp. PCC6803 and C. reinhardtii. Cyanobacteria are photosynthetic organisms and have great potential for metabolic engineering to produce commercially important chemicals such as biofuels, pharmaceuticals, and nutraceuticals. Chapter 4 presents our new genome scale reconstruction of the model cyanobacterium, Synechocystis sp. PCC6803, called iCJ816. This reconstruction was analyzed and compared to experimental studies, and used for predicting the capacity of the organism for (i) carbon dioxide remediation, and (ii) production of intracellular chemical species. Chapter 5 uses our new model iCJ816 for dynamic analysis under diurnal growth simulations. We discuss predictions of different optimization schemes, and present a scheme that qualitatively matches observations.
2016 Fall.
Includes bibliographical references.
Rights Access
metabolic networks
network reconstruction
systems biology
Associated Publications