Department of Statistics
Permanent URI for this community
These digital collections include theses, dissertations, and datasets from the Department of Statistics. Due to departmental name changes, materials from the following historical department are also included here: Mathematics and Statistics.
Browse
Browsing Department of Statistics by Subject "air quality"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Item Open Access Dataset associated with "Laboratory evaluation of low-cost PurpleAir PM monitors and in-field correction using co-located portable filter samplers"(Colorado State University. Libraries, 2019) Tryner, Jessica; L'Orange, Christian; Mehaffy, John; Miller-Lionberg, Daniel; Hofstetter, Josephine C.; Wilson, Ander; Volckens, JohnLow-cost aerosol monitors can provide more spatially- and temporally-resolved data on ambient fine particulate matter (PM2.5) concentrations than are typically available from regulatory monitoring networks; however, low-cost monitors—which do not measure PM2.5 mass directly and tend to be sensitive to variations in particle size and refractive index—sometimes produce inaccurate concentration estimates. We investigated laboratory- and field-based approaches for calibrating low-cost PurpleAir monitors against gravimetric filter samples. First, we investigated the linearity of the PurpleAir response to NIST Urban PM and derived a laboratory-based gravimetric correction factor. Then, we co-located PurpleAir monitors with portable filter samplers at 15 outdoor sites spanning a 3×3-km area in Fort Collins, CO, USA. We evaluated whether PM2.5 correction factors derived from periodic co-locations with portable filter samplers improved the accuracy of PurpleAir monitors (relative to reference filter samplers operated at 16.7 L/min). We also compared 72-hour average PM2.5 concentrations measured using portable and reference filter samplers. Both before and after field deployment, the coefficient of determination for a linear model relating NIST Urban PM concentrations measured by a tapered element oscillating microbalance and the PurpleAir monitors (PM2.5 ATM) was 0.99; however, an F-test identified a significant lack of fit between the model and the data. The laboratory-based correction factor did not translate to the field. Correction factors derived in the field from monthly, weekly, semi-weekly, and concurrent co-locations with portable filter samplers increased the fraction of 72-hour average PurpleAir PM2.5 concentrations that were within 20% of the reference concentrations from 15% (for uncorrected measurements) to 45%, 59%, 56%, and 70%, respectively. Furthermore, 72-hour average PM2.5 concentrations measured using portable and reference filter samplers agreed (bias ≤ 20% for 71% of samples). These results demonstrate that periodic co-location with portable filter samplers can improve the accuracy of 72-hour average PM2.5 concentrations reported by PurpleAir monitors.