Theses and Dissertations
Permanent URI for this collection
Browse
Browsing Theses and Dissertations by Subject "abelian variety"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Item Open Access Conjugacy classes of matrix groups over local rings and an application to the enumeration of abelian varieties(Colorado State University. Libraries, 2012) Williams, Cassandra L., author; Achter, Jeffrey, advisor; Eykholt, Richard, committee member; Hulpke, Alexander, committee member; Penttila, Tim, committee memberThe Frobenius endomorphism of an abelian variety over a finite field Fq of dimension g can be considered as an element of the finite matrix group GSp2g(Z/lr). The characteristic polynomial of such a matrix defines a union of conjugacy classes in the group, as well as a totally imaginary number field K of degree 2g over Q. Suppose g = 1 or 2. We compute the proportion of matrices with a fixed characteristic polynomial by first computing the sizes of conjugacy classes in GL2(Z/lr) and GSp4(Z/lr. Then we use an equidistribution assumption to show that this proportion is related to the number of abelian varieties over a finite field with complex multiplication by the maximal order of K via a theorem of Everett Howe.