Faculty Publications
Permanent URI for this collection
Browse
Browsing Faculty Publications by Subject "14C"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access Automated analysis of 15N and 14C in biological samples(Colorado State University. Libraries, 1989) Paul, Eldor A., author; Harris, D., author; Marcel Dekker, Inc., publisherAn automated method for the simultaneous analysis of total N, total C, 15N and 14C in small plant and soil samples is described. A commercial C-N analyser - continuous flow isotope ratio mass spectrometer (ANCA-MS) has been extended to also measure CO2 and collect 14CO2 produced by sample combustion. Samples containing 20 - 200 μg N and up to 5 mg C can be analysed directly with no sample preparation other than drying and fine grinding. The precision of total elemental analysis is comparable to that by conventional methods. The average standard deviation of 15N analyses of plant material at natural abundance was ±1 ‰. This is accurate enough for all 15N studies except those using natural abundance and possibly long term studies of soil organic matter. Recovery of 14C in test samples was 100%. The instrument can be operated by graduate students under supervision and operating costs are primarily for sample cups, combustion catalyst and quartz tubes.Item Open Access Biological and molecular structure analyses of the controls on soil organic matter dynamics(Colorado State University. Libraries, 2008-09) Magrini, K., author; Follett, R. F., author; Conant, R., author; Paul, Eldor A., author; Morris, S. J., author; Lomonosov Moscow State University, Department of Chemistry, publisherThe dynamics of soil organic carbon (SOC) are controlled by the interaction of biological, physical, and chemical parameters. These are best measured by a combination of techniques such as long-term field sites with a C3↔C4 plant switch. Acid hydrolysis and 14C- dating measure the mean residence time (MRT) of the resistant fraction. Long-term incubation allows the in situ biota to identify and decompose the labile SOC components. Statistical analysis (curve fitting) of the CO2 release curves, determines the pool size and of the two labile fractions (1). The effect of chemical structure is measured with pyrolysismolecular beam mass spectrometry (py-MBMS). The dynamics of charcoal, clay and silt are measured with both 13C and 14C.