Browsing by Author "Zhou, Xiaoyan, author"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Embargo Interaction and navigation in cross-reality analytics(Colorado State University. Libraries, 2024) Zhou, Xiaoyan, author; Ortega, Francisco, advisor; Ray, Indrakshi, committee member; Moraes, Marcia, committee member; Batmaz, Anil Ufuk, committee member; Malinin, Laura, committee memberAlong with immersive display technology's fast evolution, augmented reality (AR) and virtual reality (VR) are increasingly being researched to facilitate data analytics, known as Immersive Analytics. The ability to interact with data visualization in the space around users not only builds the foundation of ubiquitous analytics but also assists users in the sensemaking of the data. However, interaction and navigation while making sense of 3D data visualization in different realities still need to be better understood and explored. For example, what are the differences between users interacting in augmented and virtual reality, and how can we utilize them in the best way during analysis tasks? Moreover, based on the existing work and our preliminary studies, improving the interaction efficiency with immersive displays still needs to be solved. Therefore, this thesis focuses on understanding interaction and navigation in augmented reality and virtual reality for immersive analytics. First, we explored how users interact with multiple objects in augmented reality by using the "Wizard of Oz" study approach. We elicited multimodal interactions involving hand gestures and speech, with text prompts shown on the head-mounted display. Then, we compared the results with previous work in a single-object scenario, which helped us better understand how users prefer to interact in a more complex AR environment. Second, we built an immersive analytics platform in both AR and VR environments to simulate a realistic scenario and conducted a controlled study to evaluate user performance with designed analysis tools and 3D data visualization. Based on the results, interaction and navigation patterns were observed and analyzed for a better understanding of user preferences during the sensemaking process. ii Lastly, by considering the findings and insights from prior studies, we developed a hybrid user interface in simulated cross-reality for situated analytics. An exploratory study was conducted with a smart home setting to understand user interaction and navigation in a more familiar scenario with practical tasks. With the results, we did a thorough qualitative analysis of feedback and video recording to disclose user preferences with interaction and visualization in situated analytics in the everyday decision-making scenario. In conclusion, this thesis uncovered user-designed multimodal interaction including mid-air hand gestures and speech for AR, users' interaction and navigation strategies in immersive analytics in both AR and VR, and hybrid user interface usage in situated analytics for assisting decision-making. Our findings and insights in this thesis provide guidelines and inspiration for future research in interaction and navigation design and improving user experience with analytics in mixed-reality environments.Item Open Access Lights, headset, tablet, action: exploring the use of hybrid user interfaces for immersive situated analytics(Colorado State University. Libraries, 2024-10-24) Zhou, Xiaoyan, author; Lee, Benjamin, author; Ortega, Francisco R., author; Batmaz, Anil Ufuk, author; Yang, Yalong, author; ACM, publisherWhile augmented reality (AR) headsets provide entirely new ways of seeing and interacting with data, traditional computing devices can play a symbiotic role when used in conjunction with AR as a hybrid user interface. A promising use case for this setup is situated analytics. AR can provide embedded views that are integrated with their physical referents, and a separate device such as a tablet can provide a familiar situated overview of the entire dataset being examined. While prior work has explored similar setups, we sought to understand how people perceive and make use of visualizations presented on both embedded visualizations (in AR) and situated visualizations (on a tablet) to achieve their own goals. To this end, we conducted an exploratory study using a scenario and task familiar to most: adjusting light levels in a smart home based on personal preference and energy usage. In a prototype that simulates AR in virtual reality, embedded visualizations are positioned next to lights distributed across an apartment, and situated visualizations are provided on a handheld tablet. We observed and interviewed 19 participants using the prototype. Participants were easily able to perform the task, though the extent the visualizations were used during the task varied, with some making decisions based on the data and others only on their own preferences. Our findings also suggest the two distinct roles that situated and embedded visualizations can have, and how this clear separation might improve user satisfaction and minimize attention-switching overheads in this hybrid user interface setup. We conclude by discussing the importance of considering the user's needs, goals, and the physical environment for designing and evaluating effective situated analytics applications.