Browsing by Author "Yost, Dylan C., advisor"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access A new measurement of the 2S1/2-8D5/2 transition in atomic hydrogen(Colorado State University. Libraries, 2021) Brandt, Adam D., author; Yost, Dylan C., advisor; Yalin, Azer P., committee member; Roberts, Jacob L., committee member; Field, Stuart B., committee memberHigh-precision spectroscopy of simple atoms provides input data that can be used to extract fundamental constants and to test Standard Model theory. Hydrogen, the simplest element, has played a historically significant role in the development of fundamental theory and, more recently, provides important data for the proton radius puzzle. In this thesis, we will describe a new measurement of the 2S1/2-8D5/2 transition on a cryogenic hydrogen beam. We will overview the measurement scheme and experimental apparatus, then present analysis and systematic characterization important to the spectroscopy. Finally, we will present our preliminary determination of the proton radius and the Rydberg constant using our value for the 2S1/2-8D5/2 combined with the previously measured 1S-2S transition.Item Open Access Optical lattice deceleration of a cryogenic metastable atomic hydrogen beam(Colorado State University. Libraries, 2023) Cooper, Samuel F., author; Yost, Dylan C., advisor; Roberts, Jacob L., committee member; Gelfand, Martin, committee member; Van Orden, Alan, committee memberHydrogen is the most abundant and simple naturally occurring element in existence, making it an ideal platform for study of fundamental atomic physics. Theoretical physics has the capacity of making extraordinarily precise predictions of atomic hydrogen's energy levels, owing to hydrogen's innate simplicity. To provide valuable new information to the theoretical models, such as definitions of fundamental constants, requires pushing experimental measurement of these energy levels to extreme precision, and obtaining experimental values that agree or disagree with theory provide a rigorous test of fundamental physics. Unfortunately, hydrogen has yet to benefit from the advent of laser cooling and trapping techniques pioneered in other species due to the prohibitive ultraviolet wavelengths required. As a consequence, modern best measurements to-date are limited by uncertainties due to thermal energies of atomic hydrogen samples. The next generation of ultra-high precision experiments will require new ways to obtain slow and or cold atomic hydrogen. This work contains progress made towards this goal, where advent of a novel high power UV radiation source on this experiment opened the viability for exploring new horizons. Specifically detailed in this dissertation are the efforts toward generating a cryogenic helium temperature beam of metastable (2S) atomic hydrogen with velocity characterization and a first ever demonstration of a novel, all-optical deceleration method which utilizes an electro-optically controlled far detuned optical lattice. In the proof-of-principle experiment a velocity selected portion of the atomic hydrogen beam was decelerated from 300 ms–1 to 280 ms–1 in a single 30 ns optical pulse.