Browsing by Author "Shoemaker, Mark, advisor"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access A quantum H*(T)-module via quasimap invariants(Colorado State University. Libraries, 2024) Lee, Jae Hwang, author; Shoemaker, Mark, advisor; Cavalieri, Renzo, advisor; Gillespie, Maria, committee member; Peterson, Christopher, committee member; Hulpke, Alexander, committee member; Chen, Hua, committee memberFor X a smooth projective variety, the quantum cohomology ring QH*(X) is a deformation of the usual cohomology ring H*(X), where the product structure is modified to incorporate quantum corrections. These correction terms are defined using Gromov-Witten invariants. When X is toric with geometric quotient description V//T, the cohomology ring H*(V//T) also has the structure of a H*(T)-module. In this paper, we introduce a new deformation of the cohomology of X using quasimap invariants with a light point. This defines a quantum H*(T)-module structure on H*(X) through a modified version of the WDVV equations. We explicitly compute this structure for the Hirzebruch surface of type 2. We conjecture that this new quantum module structure is isomorphic to the natural module structure of the Batyrev ring for a semipositive toric variety.Item Open Access Combinatorial structures of hyperelliptic Hodge integrals(Colorado State University. Libraries, 2021) Afandi, Adam, author; Cavalieri, Renzo, advisor; Shoemaker, Mark, advisor; Adams, Henry, committee member; Prasad, Ashok, committee memberThis dissertation explores the combinatorial structures that underlie hyperelliptic Hodge integrals. In order to compute hyperelliptic Hodge integrals, we use Atiyah-Bott (torus) localization on a stack of stable maps to [P1/Z2] = P1 × BZ2. The dissertation culminates in two results: a closed-form expression for hyperelliptic Hodge integrals with one λ-class insertion, and a structure theorem (polynomiality) for Hodge integrals with an arbitrary number of λ-class insertions.Item Open Access Quantum Serre duality for quasimaps(Colorado State University. Libraries, 2022) Heath, Levi Nathaniel, author; Shoemaker, Mark, advisor; Cavalieri, Renzo, committee member; Gillespie, Maria, committee member; Gelfand, Martin, committee memberLet X be a smooth variety or orbifold and let Z ⊆ X be a complete intersection defined by a section of a vector bundle E → X. Originally proposed by Givental, quantum Serre duality refers to a precise relationship between the Gromov–Witten invariants of Z and those of the dual vector bundle E∨. In this paper we prove a quantum Serre duality statement for quasimap invariants. In shifting focus to quasimaps, we obtain a comparison which is simpler and which also holds for nonconvex complete intersections. By combining our results with the wall-crossing formula developed by Zhou, we recover a quantum Serre duality statement in Gromov-Witten theory without assuming convexity.