Browsing by Author "Grant, Lewis O., advisor"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access Investigation of enhanced-reflectivity features embedded within a wintertime orographic cloud on 28-29 November 1984(Colorado State University. Libraries, 1994) Baker, Ian T., author; Grant, Lewis O., advisor; Mielke, Paul W., committee member; Cotton, William R., committee memberA combination of aircraft, sounding, surface, vertically-pointing ku-Band radar and dual-channel radiometer data was used to investigate the microphysical characteristics of enhanced-reflectivity areas embedded within an orographic cloud in northwestern Colorado on 28-29 November 1984. The orographic cloud was associated with the passage of an open wave and upper-level front over the region, and embedded within the cloud were regularly-spaced areas of increased reflectivity as seen by the vertically-pointing radar. The radiometer observed a cyclical component on both the liquid and vapor channels when oriented in the vertical. Aircraft data reveal that there was supercooled liquid water in the cloud at levels as high as 41 kPa and as far as 55 km upwind of the barrier. 2D-C and 2D-P probe data indicated two crystal regimes, one where concentrations in individual size bins were larger and spectra were broader, indicating crystal growth. In the other, concentrations were smaller and size spectra were narrower. Radar data indicate that the enhanced-reflectivity regions were between 10-20 km apart, with a length dimension on the order of 5 km wide. It is believed that the presence of the enhanced-reflectivity areas is closely linked to the presence of a decoupled layer on the windward side of the barrier, and preliminary evidence points to a gravity-wave mechanism as a physical cause.Item Open Access Physical mechanisms of extra area effects from weather modification(Colorado State University. Libraries, 1977) Mulvey, G. (Gerald), author; Grant, Lewis O., advisor; Karaki, Susumu, committee member; Corrin, Myron L., committee member; Mielke, Paul W., committee member; Cotton, William R., committee memberOne of the complexities of weather modification, namely extra area effects have long posed an opportunity for the long-term control of the earth's weather. This study investigates the physical mechanisms by which cloud seeding projects may cause extra area effects. The investigations center on one of the simplest of precipitating systems, namely the cold wintertime orographic clouds of the central Rocky Mountains. Three lines of investigation are followed: (1) field studies of seeding material movement in the atmosphere and receiver cloud characteristics, (2) numerical simulation, and (3) historical studies of the affected cloud system. The field observations consist of case studies of the movement and dispersion of silver iodide from ground based generators. These studies, during the winters of 1974-75 and 1975-76, used nuclei counters aboard two aircraft. Aerosol silver concentration measurements were also made during the last experimental year. The surface observations made as part of the field studies included snow collection for silver analysis, radar observation and ice nuclei measurements. The aircraft studies established the fact that regions of above background ice nuclei concentrations extend from the target cloud systems as far as 240 km downwind while exhibiting concentrations from 10 to over 700 ice nuclei per liter active at -20°C. The analysis of silver concentrations in snow confirmed above background silver concentrations exist in snow samples on days during which cloud seeding occurred in the mountains. The numerical cloud models were used to investigate the mode of seeding and the seeding requirements of the downwind cloud systems. Case study r n s using a cumulus model suggested that seeding the upslope cloud would cause little dynamic intensification. It was therefore inferred that the seeding mode was static. The second cloud model, a rapid glaciation model, estimated the seeding requirements in terms of active ice nuclei or ice crystals for precipitation augmentation to be between 1.0 and 5 No1-1. An ice crystal transport model was used to predict 0 the survival time for a spectrum of crystal sizes under a variety of conditions. The results indicate that under certain meteorological conditions crystals typically observed in orographic conditions can survive long enough to reach the downwind upslope cloud in concentrations between 0.5 and 50 No1-1. The historical studies established characteristics of the typical upslope clouds as well as the surf ace features controlling their formation. The radar observations showed convective-like echoes migrating within the upslope cloud over the eastern plains of Colorado downwind of Climax. These studies show that at least two feasible mechanisms through which mountain orographic clouds can affect the precipitation on the eastern plains exist, and, under certain conditions, are operative.