Browsing by Author "Cleveland, Zackary I., author"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Item Open Access Developing hyperpolarized krypton-83 for nuclear magnetic resonance spectroscopy and magnetic resonance imaging(Colorado State University. Libraries, 2008) Cleveland, Zackary I., author; Meersman, Thomas, advisorThis dissertation discusses the production of highly nonequilibrium nuclear spin polarization, referred to as hyperpolarization or hp, in the nuclear spin I = 9/2 noble gas isotope krypton-83 using spin exchange optical pumping (SEOP). This nonequilibrium polarization yields nuclear magnetic resonance (NMR) signals that are enhanced three or more orders of magnitude above those of thermally polarized krypton and enables experiments that would otherwise be impossible. Krypton-83 possesses a nuclear electric quadrupole moment that dominates the longitudinal (T1) relaxation due to coupling of the quadrupole moment to fluctuating electric field gradients generated by distortions to the spherical symmetry of the electronic environment. Relaxation slows polarization buildup and limits the maximum signal intensity but makes krypton-83 a sensitive probe of its environment. The gas-phase krypton-83 longitudinal relaxation rate increases linearly with total gas density due to binary collisions. Density independent relaxation, caused by the formation of krypton-krypton van der Waals molecules and surface adsorption, also contributes to the observed rate. Buffer gases suppress van der Waals molecule mediated relaxation by breaking apart the weakly bound krypton dimers. Surface relaxation is gas composition independent and therefore more difficult to suppress. However, this relaxation mechanism makes hp krypton-83 sensitive to important surface properties including surface-to-volume ratio, surface chemistry, and surface temperature. The presence of surfaces with high krypton adsorption affinities (i.e. hydrophobic surfaces) accelerates the relaxation times and can produce T1 contrast in hp krypton-83 magnetic resonance imaging (MRI). Tobacco smoke deposited on surfaces generates strong T1 contrast allowing the observation of smoke deposition with spatial resolution. Conversely, water adsorption on surfaces significantly lengths the T1 times due competitive surface adsorption. Finally, this work demonstrates that hp krypton-83 MRI of intact, excised lungs is feasible. No attempts have been made to observe pathology specific contrast, but this work represents the first steps in developing hp krypton into a useful biomedical tool. Although the signal must be improved for biomedical applications, additional enhancements of up to 180 times greater than the currently obtained signal are possible through improved SEOP, and another order of magnitude increase can be obtained through isotopic enrichment.