Browsing by Author "Biswas, Sounak Kumar, author"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Embargo Advanced solutions for rainfall estimation over complex terrain in the San Francisco Bay area(Colorado State University. Libraries, 2023) Biswas, Sounak Kumar, author; Chandrasekar, V., advisor; Cheney, Margaret, committee member; Gooch, Steven, committee member; James, Susan, committee memberFresh water is an increasingly scarce resource in the western United States and effective management and prediction of flooding and drought have a direct economic impact on almost all aspects of society. Therefore it is critical to monitor and predict water inputs into the hydrological cycle of the Western United States (US). The complex topography of the western US poses a significant challenge in developing physically realistic and spatially accurate estimates of precipitation using remote sensing techniques. The intricate landscape presents a challenging observing environment for weather radar systems. This is further compounded by the complex microphysical processes during the cool season which are influenced by coastal air-sea interactions, as well as orographic effects along the coastal regions of the West. The placement and density of operational National Weather Service (NWS) radars (popularly known as NEXRAD or WSR-88D) pose a challenge in meeting the needs for water resource management in the western US due to the complex terrain of the region. Consequently, areas like the San Francisco Bay Area could use enhanced precipitation monitoring, in terms of amount and type, along watersheds and surrounding rivers and streams. Shorter wavelength radars such as X-Band radar systems are able to augment the WSR-88D network, to observe better the lower atmosphere with higher temporal and spatial resolution. This research investigates and documents the challenges of precipitation monitoring by radars over complex terrain and aims to provide effective and advanced solutions for accurate Quantitative Precipitation Estimation (QPE) using both WSR-88D and the gap-filling X-Band radar systems over the Bay Area on the US West Coast, with a focus on the cool season. Specifically, this study focuses on a precipitation microphysics perspective, aiming to create an algorithm capable of distinguishing orographically enhanced rainfall from cool-season stratiform rainfall using X-Band radar observations. A radar-based rainfall estimator is developed to increase the accuracy of rainfall quantification. Additionally, various other scientific and engineering challenges have been addressed including radar calibration, attenuation correction of the radar beam, radar beam blockage due to terrain, and correction of measurements of the vertical profiles of radar observables. The final QPE product is constructed by merging the X-Band based QPE product with the operational NEXRAD based QPE product, significantly enhancing the overall quality of rainfall mapping within the Bay Area. Case studies reveal that the new product is able to improve QPE accuracy by ~70% in terms of mean absolute error and root mean squared error compared to the operational products. This establishes the overall need for precipitation monitoring by gap-filling X-Band radar systems in the complex terrain of the San Francisco Bay Area.Item Open Access Cross validation of observations from the GPM dual-frequency precipitation radar and dual-polarization S-band ground radars(Colorado State University. Libraries, 2018) Biswas, Sounak Kumar, author; Chandrasekar, V., advisor; Cheney, Margaret, committee member; Mielke, Paul W., committee memberThis research presents a comparative study of observations and various products of the Global Precipitation Measurement (GPM) Mission Satellite with dual polarization S-Band Ground Radars. The GPM mission is a joint venture by the NASA and the JAXA. The radar on board the core observatory is a dual-frequency precipitation radar (DPR) capable of simultaneously operating at 13.6 GHz (Ku band) and 35.5 GHz (Ka band). The DPR is expected to revolutionize the way precipitation is measured from space through its dual-frequency observations. Ground Validation is one of the most critical aspects of the GPM mission. The best way of doing this is by direct comparison of the space-based observations with well calibrated dual polarization ground radar measurements. Before any direct comparisons can be made, volume matching of the data is necessary due to the difference in observation geometry and resolution volume of both the system. In this study, a methodology developed by Bolen and Chandrasekar (2001) for aligning TRMM satellite data with ground radar data is followed. This technique was extended by Schwaller and Morris (2011). Radar reflectivity and rainfall rate product comparison study have been performed in detail. Vertical profiles have been studied thoroughly. Various case studies of simultaneous GPM-DPR and ground radar observations have been carefully chosen. Ground validation operational NEXRAD sites have been considered from all over the USA. Comparison studies with research radars such as CSU-CHILL and NASA N-POL have also been conducted. The GPM satellite's profile classification module's products are also evaluated. Results from Hydrometeor classification method by Bechini and Chandrasekar (2015) for ground radars have been extensively used for validating DPR's melting layer detection capability in different types of precipitation system. In this study, a new method developed by Le et al (2017) for identification of snow falling on the ground has been considered. Ground validation comparisons have been performed with observations from ground radars and the results are presented.