Theses and Dissertations
Permanent URI for this collection
Browse
Browsing Theses and Dissertations by Author "Alaka, Ghassan J., Jr., author"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access African easterly wave energetics on intraseasonal timescales(Colorado State University. Libraries, 2014) Alaka, Ghassan J., Jr., author; Maloney, Eric D., advisor; Schubert, Wayne H., committee member; Schumacher, Russ S., committee member; Venayagamoorthy, Subhas K., committee memberAfrican easterly waves (AEWs) are synoptic-scale eddies that dominate North African weather in boreal summer. AEWs propagate westward with a maximum amplitude near 700 hPa and a period of 2.5-6-days. AEWs and associated perturbation kinetic energy (PKE) exhibit significant intraseasonal variability in tropical North Africa during boreal summer, which directly impacts local agriculture and tropical cyclogenesis. This study performs a comprehensive analysis of the 30-90-day variability of AEWs and associated energetics using both reanalysis data and model output. Specifically, the PKE and perturbation available potential energy (PAPE) budgets are used to understand the factors that contribute to PKE maxima in West Africa and the extent to which these surges of AEW activity are modulated by the Madden-Julian oscillation (MJO). The role of the MJO in the intraseasonal variability of AEWs is assessed by comparing PKE sources as a function of an MJO index and a local 30-90-day West African PKE index. Since East Africa is an initiation zone for AEW activity and is modulated by the MJO, the relationship between this region and West Africa is a primary focus in this study. The intraseasonal variability of AEW energetics is first investigated in reanalysis products. While reanalysis data depicts a similar evolution of 30-90-day PKE anomalies in both the MJO and a local PKE index, the MJO index describes only a small (yet still significant) fraction of the local 30-90-day variance. In boreal summers with more significant MJO days, the correlation between the two indices is higher. Baroclinic energy conversions are important for the initiation of 30-90-day West African PKE events east of Lake Chad. In West Africa, both barotropic and baroclinic energy conversions maintain positive PKE anomalies before they propagate into the Atlantic. The primary role of diabatic heating is to destroy PAPE in a negative feedback to baroclinic energy conversions in West Africa. More frequent East Atlantic tropical cyclone generation is associated with positive PKE events than with negative PKE events. Easterly wave activity is then examined in a regional model. The Advanced Research Weather Research and Forecasting (WRF-ARW) simulates West African monsoon climatology more accurately than the WRF Nonhydrostatic Mesoscale Model (WRF-NMM). Although the WRF-NMM produces more realistic boreal summer rainfall than the WRF-ARW, it fails to accurately simulate the AEJ and other key West African monsoon features. Parameterizations within the WRF-ARW are scrutinized as well, with the WRF single-moment 6-class microphysics and the Noah land surface model outperforming Thompson microphysics and the RUC land surface model. Three ten-year WRF-ARW experiments are performed to investigate the role of external forcing on intraseasonal variability in West Africa. In addition to a control simulation, two sensitivity experiments remove 30-90-day variability from the boundary conditions (for all zonal wavenumbers and just for eastward zonal wavenumbers 0-10). Overall, intraseasonal variability of AEWs shows only modest differences after the removal of all 30-90-day input into the model boundary conditions. PKE and PAPE budgets reveal that simulated positive PKE events in West Africa are preceded by extensions of the AEJ into East Africa, which enhance barotropic and baroclinic energy conversions in this region. This jet extension is associated with warm lower-tropospheric temperature anomalies in the eastern Sahara. In West Africa, the amplitude of PKE and PAPE budget terms exhibit a similar evolution (even in the sensitivity experiments) as in the reanalysis products.Item Open Access Intraseasonal variability of the west African monsoon and African easterly waves during boreal summer(Colorado State University. Libraries, 2010) Alaka, Ghassan J., Jr., author; Maloney, Eric D., advisor; Schubert, Wayne H., committee member; Venayagamoorthy, Subhas, committee memberSubstantial subseasonal variability in African easterly wave (AEW) activity and cyclogenesis frequency occurs in the main hurricane development region of the Atlantic during boreal summer. A complete understanding of intraseasonal variability in the Atlantic and west Africa during boreal summer requires analysis of how the Madden-Julian Oscillation (MJO) modulates the west African monsoon and consequently AEWs. Because the MJO is predictable a few weeks in advance, understanding how and why the MJO impacts the west African monsoon may have a profound influence on Atlantic tropical cyclone prediction. This study documents the MJO influence on the west African monsoon system during boreal summer using a variety of reanalysis and satellite datasets. This study aims to identify and explain the MJO teleconnection to the west African monsoon, and the processes that induce precipitation and AEW variability in this region. Intraseasonal west African and Atlantic convective anomalies on 30-90 day timescales are likely induced by equatorial Kelvin and Rossby waves generated in the Indian Ocean and west Pacific by the MJO. Previous studies have hypothesized that an area including the Darfur mountains and the Ethiopian highlands is an initiation region for AEWs. It is shown here that the initial MJO influence on precipitation and AEW activity in the African monsoon appears to occur in these regions, where eddy kinetic energy (EKE) anomalies first appear in advance of MJO-induced periods of enhanced and suppressed AEW activity. In the initiation region, upper tropospheric temperature anomalies are reduced, the atmosphere moistens by horizontal advection, and an eastward extension of the African easterly jet occurs in advance of the MJO wet phase of the African monsoon, when AEW activity is also enhanced. These factors all support strong precursor disturbances in the initiation region that seed the African easterly jet and contribute to downstream development of AEWs. Opposite behavior occurs in advance of the MJO dry phase. Moisture and eddy kinetic energy (EKE) budgets are examined to provide further insight as to how the MJO modulates and initiates precipitation and AEW variability in this region. In particular, meridional moisture advection anomalies foster moistening in the initiation region by anomalous flow acting across the mean moisture gradient. Additionally, positive (negative) upstream EKE tendency anomalies in advance of the MJO convective maximum (minimum) over tropical north Africa suggest wave growth (decay) near the entrance of the AEJ, while enhanced (suppressed) conversion of eddy available potential energy (EAPE) to EKE and barotropic conversion maintains downstream AEW growth (decay).