Theses and Dissertations
Permanent URI for this collection
Browse
Browsing Theses and Dissertations by Author "Abbotts, Kieran Shay Struebin, author"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Item Open Access Caffeine augments the lactate and interleukin-6 response to moderate-intensity exercise in males but not females(Colorado State University. Libraries, 2022) Abbotts, Kieran Shay Struebin, author; Bell, Christopher, advisor; Hamilton, Karyn, committee member; Melby, Christopher, committee memberThe release of interleukin (IL)-6 from contracting skeletal muscle is thought to contribute to some of the health benefits bestowed by exercise. This IL-6 response appears proportional to exercise volume. Unfortunately, high volumes of exercise are not feasible for all people. Caffeine augments the magnitude of increase in circulating concentration of IL-6 in response to high-intensity and long-duration exercise, in males. Caffeine is also known to increase circulating concentrations of lactate during exercise. One of the mechanisms thought to contribute to IL-6 release from exercising skeletal muscle is lactate production. We hypothesized that caffeine, ingested prior to moderate-intensity exercise, would lead to greater circulating concentrations of lactate and IL-6 in a study population comprising both males and females. 15 healthy adults (9 males and 6 females, aged 26±7 years, (mean ± SD)) completed 30-minutes of moderate-intensity cycle ergometer exercise, equivalent to the ventilatory threshold, after ingesting either caffeine (6 mg/kg) or placebo. Arterialized-venous blood was collected throughout each of the exercise sessions. Compared with placebo, caffeine increased end-exercise circulating concentrations of lactate (5.72±3.95 vs. 7.14±4.66 mmol/L, P<0.001) but not end-exercise IL-6 (1.84±0.97 vs. 2.37±1.04 pg/mL, P=0.139). However, when females were excluded from the analysis, caffeine augmented (P=0.04) the magnitude of increase of end-exercise IL-6 concentration (1.80±0.86 vs. 2.57±1.21 pg/mL); this effect was further exaggerated after 30-minutes of inactive recovery (3.81±2.32 vs. 5.06±3.22 pg/mL). Noteworthy, caffeine evoked greater end-exercise lactate concentrations in data sets containing only males (P=0.02) and only females (P=0.002) but did not influence the IL-6 response in females (P=0.94). Our preliminary data imply that in males unable/unwilling to perform high-intensity and/or long-duration exercise, caffeine may potentially enhance the IL-6 mediated health benefits of relatively short, moderate-intensity exercise.