Department of Systems Engineering
Permanent URI for this community
This digital collection includes faculty/student publications, theses, dissertations, and datasets from the Department of Systems Engineering.
Browse
Browsing Department of Systems Engineering by Author "Atadero, Rebecca, committee member"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Open Access Application of systems engineering principles in the analysis, modeling, and development of a DoD data processing system(Colorado State University. Libraries, 2023) Fenton, Kevin P., author; Simske, Steven J., advisor; Bradley, Thomas, committee member; Carlson, Ken, committee member; Atadero, Rebecca, committee memberIn support of over 1000 military installations worldwide, the Department of Defense (DoD) has procured contracts with thousands of vendors that supply the military with hazardous materials constituting billions of dollars of defense expenses in support of facility and asset maintenance. These materials are used for a variety of purposes ranging from weapon system maintenance to industrial and facility operations. In order to comply with environmental, health, and safety (EHS) regulations, the vendors are contractually obligated to provide Safety Data Sheets (SDSs) listing EHS concerns compliant with the requirements set forth by the United Nations Globally Harmonized System of Classification and Labeling of Chemicals (GHS). Each year chemical vendors provide over 100 thousand SDSs in a PDF or hard copy format. These SDSs are then entered manually by data stewards into the DoD centralized SDS repository – the Hazardous Material Management Information System (HMIRS). In addition, the majority of these SDS are also loaded separately by separate data stewards into downstream environmental compliance systems that support specific military branches. The association between the vendor-provided SDSs and the materials themselves was then lost until the material reaches an installation at which point personnel must select the SDS associated to the hazardous material within the service-specific hazardous material tracking system. This research applied systems engineering principles in the analysis, modeling, and development of a DoD data processing system that could be used to increase efficiency, reduce costs, and provide an automated solution not only to data entry reduction but in transitioning and modernizing the hazard communication and data transfer towards a standardized approach. Research for the processing system covered a spectrum of modern analytics and data extraction techniques including optical character recognition, artificial neural networks, and meta-algorithmic processes. Additionally, the research covered potential integration into existing DoD framework and optimization to solve many long-standing chemical management problems. While the long-term focus was for chemical manufacturers to provide SDS data in a standardized machine-encoded format, this system is designed to act as a transitionary tool to reduce manual data entry and costs of over $3 million each year while also enhancing system features to address other major obstacles in the hazard communication process. Complexities involved with the data processing of SDSs included multi-lingual translation needs, image and text recognition, periodic use of tables, and while SDSs are structured with 16 distinct sections – a general lack of standardization on how these sections were formatted. These complexities have been addressed using a patent-pending meta-algorithmic approach to produce higher data extraction yields than what an artificial neural network can produce alone while also providing SDS-specific data validation and calculation of SDS-derived data points. As the research progressed, this system functionality was communicated throughout the DoD and became part of a larger conceptual digital hazard communication transformation effort currently underway by the Office of the Secretary of Defense and the Defense Logistics Agency. This research led to five publications, a pending patent, an award for $280,000 for prototype development, and a project for the development of this system to be used as one of the potential systems in a larger DoD effort for full chemical disclosure and proactive management of not only hazardous chemicals but potentially all DoD-procured products.Item Open Access Application of systems engineering to complex systems and system of systems(Colorado State University. Libraries, 2017) Sturdivant, Rick L., author; Chong, Edwin K. P., advisor; Sega, Ronald M., committee member; Jayasumana, Anura P., committee member; Atadero, Rebecca, committee memberThis dissertation is an investigation of system of systems (SoS). It begins with an analysis to define, with some rigor, the similarities and differences between complex systems and SoS. With this foundation, the baseline concept is development for several different types of systems and they are used as a practical approach to compare and contrast complex systems versus SoS. The method is to use a progression from simple to more complex systems. Specifically, a pico hydro electric power generation system, a hybrid renewable electric power generation system, a LEO satellites system, and Molniya orbit satellite system are investigated. In each of these examples, systems engineering methods are applied for the development of a baseline solution. While these examples are complex, they do not rise to the level of a SoS. In contrast, a multi-spectral drone detection system for protection of airports is investigated and a baseline concept for it is generated. The baseline is shown to meet the minimum requirements to be considered a SoS. The system combines multiple sensor types to distinguish drones as targets. The characteristics of the drone detection system which make it a SoS are discussed. Since emergence is considered by some to be a characteristic of a SoS, it is investigated. A solution to the problem of determining if system properties are emergent is presented and necessary and sufficient conditions for emergence are developed. Finally, this work concludes with a summary and suggestions for additional work.Item Open Access Customer and system impacts of grid support functions for voltage management strategies(Colorado State University. Libraries, 2020) Giraldez Miner, Julieta, author; Suryanarayanan, Siddharth, advisor; Atadero, Rebecca, committee member; Yang, Liuqing, committee member; Young, Peter, committee member; Zimmerle, Daniel, committee memberThis document describes modeling techniques and methods to study the impacts to the utility and to the customer of using DERs such as advanced inverters to provide voltage support in order to maintain voltage within the recommended voltage limits. For this, a method for accurately representing secondary circuits in distribution feeders is proposed and quasi-static-time series (QSTS) simulation techniques are used to study the impact of advance inverter functions to the utility for managing voltage and to the customer in terms of possible generation curtailment. This dissertation looks at factors in medium and low-voltage circuit topology that drive customer voltages with DERs, and investigates where along the distribution feeder are voltage based advance inverter grid support function most effective. The described modeling techniques and methods have informed policy and regulatory type decisions such as updating DER interconnection tariffs and standards.