IUCN 2nd African Buffalo Symposium
Permanent URI for this collection
This digital collection includes presentations from the International Union for Conservation of Nature (IUCN) 2nd African Buffalo Symposium, which was held in conjunction with the 9th International Wildlife Ranching Symposium in 2016.
Browse
Browsing IUCN 2nd African Buffalo Symposium by Author "Caron, A., author"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access Escherichia coli population structure and antibiotic resistance at a buffalo/cattle interface in southern Africa(Colorado State University. Libraries, 2016-09) Mercat, M., author; Clermont, O., author; Massot, M., author; Ruppe, E., author; de Garine-Wichatitsky, M., author; Miguel, E, author; Valls Fox, H., author; Cornelis, D., author; Andremont, A., author; Denamur, E., author; Caron, A., author; International Wildlife Ranching Symposium, publisherHuman/livestock/wildlife interfaces create favorable conditions for microorganisms spill over between hosts. In landscapes where human expansion encroaches into natural ecosystems, the resulting epidemics are a major cause of human/wildlife conflicts that challenge the sustainable coexistence between Mankind and Nature. Escherichia coli is a well-known bacteria, ubiquitous and harboring antibiotic resistance. It provides a good model to understand the diffusion of antibiotic resistance between hosts and the environment. This is also a good candidate to explore the mechanisms of microorganism transmission between hosts and could be used to track pathogen transmission. We used phenotypic and molecular characterization techniques to describe antibiotic resistance and the diversity of E.coli populations found in sympatric African buffalo (Syncerus caffer caffer) and cattle populations at the Hwange National Park interface, Zimbabwe. Although the structure of E. coli populations was similar between cattle and buffalo populations, we found a gradient of antibiotic resistance, highest in cattle, intermediate in buffalo that were in contact with cattle, and lowest in isolated buffalo. The types and molecular characterization of antibiotic resistance further confirm the observed gradient and suggest that antibiotic resistance is spreading from human to animal populations. We demonstrate that there is a risk of antibiotic resistance diffusion between wildlife, livestock and human populations, with unknown consequences on the health of host populations. These results also confirm that E. coli could be used as a tool to identify transmission pathways in multi-host systems, in an attempt to characterize pathogen spread and risks of emergence.Item Open Access Population genomics of the Cape buffalo subspecies of the Southern African region based on SNP markers(Colorado State University. Libraries, 2016-09) Smitz, N., author; Hansen, C. Riis, author; Durieu, B., author; Heller, R., author; Vangestel, C., author; Winant, V., author; Van Hooft, P., author; Cornélis, D., author; Chardonnet, P., author; Kraus, R., author; Caron, A., author; de Garine-Wichatitsky, M., author; Michaux, J., author; International Wildlife Ranching Symposium, publisherRecent phylogeographical and population genetic studies on the African buffalo (Syncerus caffer) have revealed a complex population structure both at continental and regional scales. These studies were mainly focused on the analysis of the genetic variations of mtDNA amplicons and microsatellites molecular markers. With the advent of Next-Generation Sequencing technologies, large-scale sequencing and identification of large sets of single nucleotide polymorphism from library construction became possible. In the present study, the ‘Genotyping-by-Sequencing' (GBS) technology was applied on 450 samples of African buffaloes spread all over its distribution range (sub-Sahara), including a more intensive sampling in Southern African regions (Mozambique, South Africa, Zimbabwe, Zambia and Botswana). The African buffalo being a non-model organism, the use of a closely related species genome (Bos taurus) to map the reads (64bp) and identify nucleotide variations was the most reliable approach. Population structure analyses and demographic parameters estimations were based on 42,643 identified SNPs. Clustering analyses revealed a structuring into 8 populations at the continental scale, with low levels of genetic differentiation, indicative of high historical gene flow. Population fragmentation impact in the Southern African region was evaluated using different indices. The confinement within protected areas, obstructing natural migrations, was shown to have impacted some of these populations. Those results are particularly of conservation concern, as the management of genetically distinct populations can increase species-wide resilience. The resolution of the results obtained with SNPs and microsatellites will be also discussed, based on datasets obtained from the same set of samples.